TatC-dependent translocation of pyoverdine is responsible for the microbial growth suppression
详细信息    查看全文
  • 作者:Yeji Lee ; Yong-Jae Kim ; Jung-Hoon Lee ; Hyung Eun Yu ; Kiho Lee
  • 关键词:growth suppression ; pyoverdine ; TatC
  • 刊名:Journal of Microbiology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:54
  • 期:2
  • 页码:122-130
  • 全文大小:1,119 KB
  • 参考文献:Arima, K., Fukuta, A., Imanaka, H., Kousaka, M., and Tamura, G. 1964. Pyrrolnitrin new antibiotic substance produced by Pseudomonas. Agr. Biol. Chem. Tokyo 28, 575–576.CrossRef
    Biswas, L., Biswas, R., Nerz, C., Ohlsen, K., Schlag, M., Schafer, T., Lamkemeyer, T., Ziebandt, A.K., Hantke, K., Rosenstein, R., et al. 2009. Role of the twin-arginine translocation pathway in Staphylococcus. J. Bacteriol. 191, 5921–5929.PubMedCentral CrossRef PubMed
    Caetano-Anolles, G. 1993. Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods Appl. 3, 85–94.CrossRef PubMed
    Carrano, C.J. and Raymond, K.N. 1979. Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J. Am. Chem. Soc. 101, 5401–5404.CrossRef
    Ding, Z. and Christie, P.J. 2003. Agrobacterium tumefaciens twinarginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type iv secretion. J. Bacteriol. 185, 760–771.PubMedCentral CrossRef PubMed
    Folkesson, A., Jelsbak, L., Yang, L., Johansen, H.K., Ciofu, O., Hoiby, N., and Molin, S. 2012. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 10, 841–851.CrossRef PubMed
    Follettie, M.T., Peoples, O.P., Agoropoulou, C., and Sinskey, A.J. 1993. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J. Bacteriol. 175, 4096–4103.PubMedCentral PubMed
    Handfield, M., Lehoux, D.E., Sanschagrin, F., Mahan, M.J., Woods, D.E., and Levesque, R.C. 2000. In vivo-induced genes in Pseudomonas aeruginosa. Infect. Immun. 68, 2359–2362.PubMedCentral CrossRef PubMed
    Hassan, H.M. and Fridovich, I. 1980. Mechanism of the antibiotic action pyocyanine. J. Bacteriol. 141, 156–163.PubMedCentral PubMed
    Holloway, B.W., Krishnapillai, V., and Morgan, A.F. 1979. Chromosomal genetics of Pseudomonas. Microbiol. Rev. 43, 73–102.PubMedCentral PubMed
    Howell, C.R. and Stipanovic, R.D. 1980. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70, 712–715.CrossRef
    Hunt, T.A., Peng, W.T., Loubens, I., and Storey, D.G. 2002. The Pseudomonas aeruginosa alternative sigma factor PvdS controls exotoxin A expression and is expressed in lung infections associated with cystic fibrosis. Microbiology 148, 3183–3193.CrossRef PubMed
    Kessler, E., Safrin, M., Olson, J.C., and Ohman, D.E. 1993. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J. Biol. Chem. 268, 7503–7508.PubMed
    Kiernan, L., Finkelstein, F.O., Kliger, A.S., Gorban-Brennan, N., Juergensen, P., Mooraki, A., and Brown, E. 1995. Outcome of polymicrobial peritonitis in continuous ambulatory peritoneal dialysis patients. Am. J. Kidney Dis. 25, 461–464.CrossRef PubMed
    Kikuchi, Y., Date, M., Itaya, H., Matsui, K., and Wu, L.F. 2006. Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl. Environ. Microbiol. 72, 7183–7192.PubMedCentral CrossRef PubMed
    Kluge, S., Hoffmann, M., Benndorf, D., Rapp, E., and Reichl, U. 2012. Proteomic tracking and analysis of a bacterial mixed culture. Proteomics 12, 1893–1901.CrossRef PubMed
    Kulasekara, H.D., Ventre, I., Kulasekara, B.R., Lazdunski, A., Filloux, A., and Lory, S. 2005. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol. Microbiol. 55, 368–380.CrossRef PubMed
    Lamont, I.L., Beare, P.A., Ochsner, U., Vasil, A.I., and Vasil, M.L. 2002. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 99, 7072–7077.PubMedCentral CrossRef PubMed
    Linget, C., Stylianou, D.G., Dell, A., Wolff, R.E., Piemont, Y., and Abdallah, M.A. 1992. Bacterial siderophores - the structure of a desferriferribactin produced by Pseudomonas fluorescens ATCC 13525. Tetrahedron Lett. 33, 3851–3854.CrossRef
    Liu, P.V. 1966. The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. 3. Identity of the lethal toxins produced in vitro and in vivo. J. Infect. Dis. 116, 481–489.CrossRef PubMed
    Meyer, J.M., Neely, A., Stintzi, A., Georges, C., and Holder, I.A. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64, 518–523.PubMedCentral PubMed
    Muller, M. 2005. Twin-arginine-specific protein export in Escherichia coli. Res. Microbiol. 156, 131–136.CrossRef PubMed
    Nielsen, T.H., Christophersen, C., Anthoni, U., and Sorensen, J. 1999. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 87, 80–90.CrossRef PubMed
    Nielsen, T.H., Thrane, C., Christophersen, C., Anthoni, U., and Sorensen, J. 2000. Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 89, 992–1001.CrossRef PubMed
    Ochsner, U.A., Snyder, A., Vasil, A.I., and Vasil, M.L. 2002. Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc. Natl. Acad. Sci. USA 99, 8312–8317.PubMedCentral CrossRef PubMed
    Oertel, D., Schmitz, S., and Freudl, R. 2015. A tatabc-type tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032. PLoS One 10, e0123413.
    O’Toole, G.A. and Kolter, R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304.CrossRef PubMed
    Otto, B.R., Verweij-van Vught, A.M., and MacLaren, D.M. 1992. Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit. Rev. Microbiol. 18, 217–233.CrossRef PubMed
    Pernet, E., Guillemot, L., Burgel, P.R., Martin, C., Lambeau, G., Sermet-Gaudelus, I., Sands, D., Leduc, D., Morand, P.C., Jeammet, L., et al. 2014. Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat. Commun. 5, 5105.CrossRef PubMed
    Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel, F.M. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902.CrossRef PubMed
    Ramos, I., Dietrich, L.E., Price-Whelan, A., and Newman, D.K. 2010. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res. Microbiol. 161, 187–191.PubMedCentral CrossRef PubMed
    Razvi, S., Quittell, L., Sewall, A., Quinton, H., Marshall, B., and Saiman, L. 2009. Respiratory microbiology of patients with cystic fibrosis in the united states, 1995 to 2005. Chest 136, 1554–1560.CrossRef PubMed
    Reynolds, M.M., Bogomolnaya, L., Guo, J., Aldrich, L., Bokhari, D., Santiviago, C.A., McClelland, M., and Andrews-Polymenis, H. 2011. Abrogation of the twin arginine transport system in Salmonella enterica serovar Typhimurium leads to colonization defects during infection. PLoS One 6, e15800.PubMedCentral CrossRef PubMed
    Ruger, M., Ackermann, M., and Reichl, U. 2014. Species-specific viability analysis of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus in mixed culture by flow cytometry. BMC Microbiol. 14, 56.PubMedCentral CrossRef PubMed
    Settles, A.M., Yonetani, A., Baron, A., Bush, D.R., Cline, K., and Martienssen, R. 1997. Sec-independent protein translocation by the maize Hcf106 protein. Science 278, 1467–1470.CrossRef PubMed
    Shin, H.S., Kim, Y.J., Yoo, I.H., Lee, H.S., Jin, S., and Ha, U.H. 2011. Autoinduction of a genetic locus encoding putative acyltransferase in Corynebacterium glutamicum. Biotechnol. Lett. 33, 97–102.CrossRef PubMed
    Simone, D., Bay, D.C., Leach, T., and Turner, R.J. 2013. Diversity and evolution of bacterial twin arginine translocase protein, tatc, reveals a protein secretion system that is evolving to fit its environmental niche. PLoS One 8, e78742.PubMedCentral CrossRef PubMed
    Slininger, P.J., Burkhead, K.D., Schisler, D.A., and Bothast, R.J. 2000. Isolation, identification, and accumulation of 2-acetamidophenol in liquid cultures of the wheat take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl. Microbiol. Biotechnol. 54, 376–381.CrossRef PubMed
    Snyder, A., Vasil, A.I., Zajdowicz, S.L., Wilson, Z.R., and Vasil, M.L. 2006. Role of the Pseudomonas aeruginosa PlcH Tat signal peptide in protein secretion, transcription, and cross-species Tat secretion system compatibility. J. Bacteriol. 188, 1762–1774.PubMedCentral CrossRef PubMed
    Straight, P.D. and Kolter, R. 2009. Interspecies chemical communication in bacterial development. Annu. Rev. Microbiol. 63, 99–118.CrossRef PubMed
    Takase, H., Nitanai, H., Hoshino, K., and Otani, T. 2000. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect. Immun. 68, 1834–1839.PubMedCentral CrossRef PubMed
    Torres, L., Perez-Ortin, J.E., Tordera, V., and Beltran, J.P. 1986. Isolation and characterization of an Fe(iii)-chelating compound produced by Pseudomonas syringae. Appl. Environ. Microbiol. 52, 157–160.PubMedCentral PubMed
    Watson, D., MacDermot, J., Wilson, R., Cole, P.J., and Taylor, G.W. 1986. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur. J. Biochem. 159, 309–313.CrossRef PubMed
    Weaver, V.B. and Kolter, R. 2004. Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration. J. Bacteriol. 186, 2376–2384.PubMedCentral CrossRef PubMed
    West, S.E., Schweizer, H.P., Dall, C., Sample, A.K., and Runyen-Janecky, L.J. 1994. Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148, 81–86.CrossRef PubMed
  • 作者单位:Yeji Lee (1)
    Yong-Jae Kim (1)
    Jung-Hoon Lee (1)
    Hyung Eun Yu (2) (4)
    Kiho Lee (2)
    Shouguang Jin (3)
    Un-Hwan Ha (1)

    1. Department of Biotechnology and Bioinformatics, Korea University, Sejong, 339-700, Republic of Korea
    2. Department of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea
    4. New Drug Discovery Lab, Hyundai Pharmaceutical Co., Ltd., Yongin, 449-060, Republic of Korea
    3. Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
  • 刊物主题:Microbiology;
  • 出版者:Springer Netherlands
  • ISSN:1976-3794
文摘
Infections are often not caused by a colonization of Pseudomonas aeruginosa alone but by a consortium of other bacteria. Little is known about the impact of P. aeruginosa on the growth of other bacteria upon coinfection. Here, cellree culture supernatants obtained from P. aeruginosa suppressed the growth of a number of bacterial strains such as Corynebacterium glutamicum, Bacillus subtilis, Staphylococcus aureus, and Agrobacterium tumefaciens, but had little effect on the growth of Escherichia coli and Salmonella Typhimurium. The growth suppression effect was obvious when P. aeruginosa was cultivated in M9 minimal media, and the suppression was not due to pyocyanin, a well-known antimicrobial toxin secreted by P. aeruginosa. By performing transposon mutagenesis, PA5070 encoding TatC was identified, and the culture supernatant of its mutant did not suppress the growth. HPLC analysis of supernatants showed that pyoverdine was a secondary metabolite present in culture supernatants of the wild-type strain, but not in those of the PA5070 mutant. Supplementation of FeCl2 as a source of iron compromised the growth suppression effect of supernatants and also recovered biofilm formation of S. aureus, indicating that pyoverdine-mediated iron acquisition is responsible for the growth suppression. Thus, this study provides the action of TatC-dependent pyoverdine translocation for the growth suppression of other bacteria, and it might aid understanding of the impact of P. aeruginosa in the complex community of bacterial species upon coinfection. Keywords growth suppression pyoverdine TatC

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700