Room Temperature Synthesis of Highly Compact TiO2 Coatings by Vacuum Kinetic Spraying to Serve as a Blocking Layer in Polymer Electrolyte-Based Dye-Sensitized Solar Cells
详细信息    查看全文
  • 作者:Jeeae Heo (1)
    P. Sudhagar (2)
    Hyungkwon Park (1)
    Woohyung Cho (2)
    Yong Soo Kang (2)
    Changhee Lee (1)

    1. Kinetic Spray Coating Laboratory
    ; Division of Materials Science and Engineering ; Hanyang University ; Seoul ; 133-791 ; Republic of Korea
    2. Department of Energy Engineering
    ; Hanyang University ; Seoul ; 133-791 ; Republic of Korea
  • 关键词:ceramics ; oxide materials ; solid state reactions ; thin films ; photoconductivity ; photovoltaics ; vacuum kinetic spray
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:24
  • 期:3
  • 页码:328-337
  • 全文大小:1,958 KB
  • 参考文献:1. B. Oregan and M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films, / Nature, 1991, 353, p 737-740 CrossRef
    2. A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, / Chem. Rev., 2010, 110, p 6595-6663 CrossRef
    3. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang, Nanowire Dye-Sensitized Solar Cells, / Nat. Mater., 2005, 4, p 455-459 CrossRef
    4. A. Nattestad, A.J. Mozer, M.K.R. Fischer, Y.B. Cheng, A. Mishra, P. Bauerle, and U. Bach, Highly Efficient Photocathodes for Dye-Sensitized Tandem Solar Cells, / Nat. Mater., 2010, 9, p 31-35 CrossRef
    5. J.H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.E. Moser, C.Y. Yi, M.K. Nazeeruddin, and M. Gratzel, A Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells with High Open-Circuit Potentials, / Nat. Commun., 2012, 3, p 1-8 CrossRef
    6. J.R. Jennings, Y. Liu, Q. Wang, S.M. Zakeeruddin, and M. Gratzel, The Influence of Dye Structure on Charge Recombination in Dye-Sensitized Solar Cells, / Phys. Chem. Chem. Phys., 2011, 13, p 6637-6648 CrossRef
    7. M.S. Kang, J.H. Kim, J. Won, and Y.S. Kang, Oligomer Approaches for Solid-State Dye-Sensitized Solar Cells Employing Polymer Electrolytes, / J. Phys. Chem. C, 2007, 111, p 5222-5228 CrossRef
    8. P. Sudhagar, S. Nagarajan, Y.G. Lee, D. Song, T. Son, W. Cho, M. Heo, K. Lee, J. Won, and Y.S. Kang, Synergistic Catalytic Effect of a Composite (CoS/PEDOT:PSS) Counter Electrode on Triiodide Reduction in Dye-Sensitized Solar Cells, / ACS Appl. Mater. Interfaces., 2011, 3, p 1838-1843 CrossRef
    9. Y.G. Lee, S. Park, W. Cho, T. Son, P. Sudhagar, J.H. Jung, S. Wooh, K. Char, and Y.S. Kang, Effective Passivation of Nanostructured TiO2 Interfaces with PEG-Based Oligomeric Coadsorbents to Improve the Performance of Dye-Sensitized Solar Cells, / J. Phys. Chem. C, 2012, 116, p 6770-6777 CrossRef
    10. A. Yella, H.W. Lee, H.N. Tsao, C.Y. Yi, and A.K. Chandiran, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, / Science, 2011, 334, p 629-634 CrossRef
    11. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies, / Nature, 1998, 395, p 583-585 CrossRef
    12. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, A Stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte, / Nat. Mater., 2003, 2, p 498
    13. H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, An Efficient and Low-Cost TiO2 Compact Layer for Performance Improvement of Dye-Sensitized Solar Cells, / Electrochem. Acta, 2009, 54, p 1319-1324 CrossRef
    14. H.-J. Kim, J.-D. Jeon, D.Y. Kim, J.-J. Lee, and S.-Y. Kwak, Improved Performance of Dye-Sensitized Solar Cells with Compact TiO2 Blocking Layer Prepared Using Low-Temperature Reactive ICP-Assisted DC Magnetron Sputtering, / J. Ind. Eng. Chem., 2012, 18, p 1807-1812 CrossRef
    15. D. Qian, Y. Li, Q. Zhang, G. Shi, and H. Wang, Anatase TiO2 Sols Derived from Peroxotitanium Acid and to Form Transparent TiO2 Compact Film for Dye-Sensitized Solar Cells, / J. Alloys Compd., 2011, 509, p 10121-10126 CrossRef
    16. S. Lee, D.H. Kim, J.Y. Kim, H.S. Jung, H. Shin, and K.S. Hong, Improved Spectral Response of Sensitized Photoelectrodes with the Optical Modulation Layer, / Electrochem. Commun., 2012, 15, p 29-33 CrossRef
    17. B. Peng, G. Jungmann, C. J盲ger, D. Haarer, H.-W. Schmidt, and M. Thelakkat, Systematic Investigation of the Role of Compact TiO2 Layer in Solid State Dye-Sensitized TiO2 Solar Cells, / Coord. Chem. Rev., 2004, 248, p 1479-1489 CrossRef
    18. S.M. Waita, B.O. Aduda, J.M. Mwabora, G.A. Niklasson, C.G. Granqvist, and G. Boschloo, Electrochemical Characterization of TiO2 Blocking Layers Prepared by Reactive DC Magnetron Sputtering, / J. Electroanal. Chem., 2009, 637, p 79-83 CrossRef
    19. J.G. Lee, J.H. Cheon, H.S. Yang, D.K. Lee, and J.H. Kim, Enhancement of Photovoltaic Performance in Dye-Sensitized Solar Cells with the Spin-Coated TiO2 Blocking Layer, / J. Nanosci. Nanotechnol., 2012, 12, p 6026-6030 CrossRef
    20. T.Y. Cho, S.G. Yoon, S.S. Sekhon, M.G. Kang, and C.H. Han, The Effect of a Sol-Gel Formed TiO2 Blocking Layer on the Efficiency of Dye-Sensitized Solar Cells, / B. Korean Chem. Soc., 2011, 32, p 3629-3633 CrossRef
    21. J.F. Taylor, / Spin coating: An Overview, Sony Chemicals Corp. of America, Mt. Pleasant, 2001
    22. H. Kozuka, S. Takenaka, and S. Kimura, Nanoscale Radiative Striations of Sol-Gel-Derived Spin-Coating Films, / Scr. Mater., 2001, 44, p 1807-1811 CrossRef
    23. K. Chen, Z. L眉, N. Ai, X. Huang, Y. Zhang, X. Ge, X. Xin, X. Chen, and W. Su, Fabrication and Performance of Anode-Supported YSZ Films by Slurry Spin Coating, / Solid State Ion., 2007, 177, p 3455-3460 CrossRef
    24. J.-A. Jeong and H.-K. Kim, Thickness Effect of RF Sputtered TiO2 Passivating Layer on the Performance of Dye-Sensitized Solar Cells, / Sol. Energ. Mater. Sol. C, 2011, 95, p 344-348 CrossRef
    25. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, / J. Therm. Spray Technol., 2008, 17, p 181-198 CrossRef
    26. J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, / J. Am. Ceram. Soc., 2006, 89, p 1834-1839 CrossRef
    27. D. Popovici and J. Akedo, Control of powder quality as a method of improving the dielectric properties of (Ba0.6,Sr0.4)TiO3 thick films fabricated by aerosol deposition method, / Jpn. J. Appl. Phys., 2010, 49, p.09MA13-09MA13-5.
    28. S.M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, Alumina Thick Films as Integral Substrates Using Aerosol Deposition Method, / Jpn. J. Appl. Phys., 2004, 43, p 5414-5418 CrossRef
    29. F. Cao, H. Park, G. Bae, J. Heo, and C. Lee, Microstructure Evolution of Titanium Nitride Film During Vacuum Kinetic Spraying, / J. Am. Ceram. Soc., 2013, 96(1), p 40-43 CrossRef
    30. D.M. Chun and S.H. Ahn, Deposition Mechanism of Dry Sprayed Ceramic Particles at Room Temperature Using a Nano-particle Deposition System, / Acta Mater., 2011, 59, p 2693-2703 CrossRef
    31. D.-W. Lee, H.-J. Kim, Y.-H. Kim, Y.-H. Yun, and S.-M. Nam, Growth Process of 伪-Al2O3 Ceramic Films on Metal Substrates Fabricated at Room Temperature by Aerosol Deposition, / J. Am. Ceram. Soc., 2011, 94(9), p 3131-3138 CrossRef
    32. A. Iwata and J. Akedo, Hexagonal to Cubic Crystal Structure Transformation During Aerosol Deposition of Aluminum Nitride, / J. Crystal. Growth, 2005, 275, p e1269-e1273 CrossRef
    33. F. Cao, H. Park, J. Heo, J. Kwon, and C. Lee, Effect of Process Gas Flow on the Coating Microstructure and Mechanical Properties of Vacuum Kinetic-Sprayed TiN Layers, / J. Therm. Spray Technol., 2013, 22(7), p 1109-1119 CrossRef
    34. K. Naoe, M. Nishiki, and A. Yumoto, Relationship Between Impact Velocity of Al2O3 Particles and Deposition Efficiency in Aerosol Deposition Method, / J. Therm. Spray Technol., 2013, 22(8), p 1267-1274 CrossRef
    35. S.W. Lee, J.H. Noh, H.S. Han, D.K. Yim, D.H. Kim, J.-K. Lee, J.Y. Kim, H.S. Jung, and K.S. Hong, Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells, / J. Phys. Chem. C, 2009, 113, p 6878-6882 CrossRef
    36. S.-Q. Fan, G.-J. Yang, C.-J. Li, G.-J. Liu, C.-X. Li, and L.-Z. Zhang, Characterization of Microstructure of Nano-TiO2 Coating Deposited by Vacuum Cold Spraying, / J. Therm. Spray Technol., 2006, 15(4), p 513-517 CrossRef
    37. C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, / Surf. Coat. Technol., 2003, 167, p 278-283 CrossRef
    38. B. Bills, M. Shanmugam, and M.F. Baroughi, Effects of Atomic Layer Deposited HfO2 Compact Layer on the Performance of Dye-Sensitized Solar Cells, / Thin Solid Films, 2011, 519, p 7803-7808 CrossRef
    39. H. Park, H. Heo, F. Cao, J. Kwon, K. Kang, G. Bae, and C. Lee, Deposition Behavior and Microstructural Features of Vacuum Kinetic Sprayed Aluminum Nitride, / J. Therm. Spray Technol., 2013, 22(6), p 882-891 CrossRef
    40. B.J. Choi, D.S. Jeong, and S.K. Kim, Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-Layer Deposition, / J. Appl. Phys., 2005, 98, p 033715-033724 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
Vacuum kinetic spraying (VKS) was used to form a blocking layer (BL) in order to increase the efficiency of dye-sensitized solar cells. Nano-sized TiO2 powders were deposited on fluorine-doped tin oxide (FTO) glass while varying the coating parameters including the mass flow, substrate transverse speed, and number of coating passes in order to control the thickness of the BL. Compared to the cell without a BL, the open-circuit voltage and short-circuit current density of the solar cell with a VKS-coated BL were noticeably improved. Consequently, the photoconversion efficiency increased up to 5.6%, which is significantly higher than that of a spin-coated BL.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700