Preparation, heat-enabled shape variation, and cargo manipulation of polymer-based micromotors
详细信息    查看全文
  • 作者:Limei Liu ; Mei Liu ; Yonggang Dong ; Wei Zhou ; Lina Zhang…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:51
  • 期:3
  • 页码:1496-1503
  • 全文大小:1,174 KB
  • 参考文献:1.Sanchez S, Soler L, Katuri J (2015) Chemically powered micro- and nanomotors. Angew Chem Int Ed 54:1414–1444CrossRef
    2.Gao W, Wang J (2014) The environmental impact of micro/nanomachines: a review. ACS Nano 8:3170–3180CrossRef
    3.Wang W, Duan WT, Ahmed S, Mallouk TE, Sen A (2013) Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–554CrossRef
    4.Abdelmohsen LKEA, Peng F, Tu YF, Wilson DA (2014) Micro- and nano-motors for biomedical applications. J Mater Chem B 2:2395–2408CrossRef
    5.Moo JGS, Pumera M (2015) Chemical energy powered nano/micro/macromotors and the environment. Chem Eur J 21:58–72CrossRef
    6.Guix M, Mayorga-Martinez CC, Merkoci A (2014) Nano/micromotors in (bio)chemical science applications. Chem Rev 114:6285–6322CrossRef
    7.van den Heuvel MGL, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336CrossRef
    8.Paxton WF, Kistler KC, Olmeda CC, Sen A, St Angelo SK, Cao YY, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126:13424–13431CrossRef
    9.Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed 44:744–746CrossRef
    10.Gao W, Sattayasamitsathit S, Orozco J, Wang J (2013) Efficient bubble propulsion of polymer-based microengines in real-life environments. Nanoscale 5:8909–8914CrossRef
    11.Gao W, Sattayasamitsathit S, Orozco J, Wang J (2011) Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc 133:11862–11864CrossRef
    12.Wu ZG, Wu YJ, He WP, Lin XK, Sun JM, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52:7000–7003CrossRef
    13.Wu YJ, Wu ZG, Lin XK, He Q, Li JB (2012) Autonomous movement of controllable assembled Janus capsule motors. ACS Nano 6:10910–10916
    14.Li JX, Zhang J, Gao W, Huang GS, Di ZF, Liu R, Wang J, Mei YF (2013) Dry-released nanotubes and nanoengines by particle-assisted rolling. Adv Mater 25:3715–3721CrossRef
    15.Mei YF, Solovev AA, Sanchez S, Schmidt OG (2011) Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev 40:2109–2119CrossRef
    16.Gao W, Pei A, Dong RF, Wang J (2014) Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J Am Chem Soc 136:2276–2279CrossRef
    17.Solovev AA, Mei YF, Urena EB, Huang GS, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–1692CrossRef
    18.He YP, Wu JS, Zhao YP (2007) Designing catalytic nanomotors by dynamic shadowing growth. Nano Lett 7:1369–1375CrossRef
    19.Catchmark JM, Subramanian S, Sen A (2005) Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small 1:202–206CrossRef
    20.Sengupta S, Ibele ME, Sen A (2012) Fantastic voyage: designing self-powered nanorobots. Angew Chem Int Ed 51:8434–8445CrossRef
    21.Orozco J, Cortes A, Cheng GZ, Sattayasamitsathit S, Gao W, Feng XM, Shen YF, Wang J (2013) Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J Am Chem Soc 135:5336–5339CrossRef
    22.Dong B, Zhou T, Zhang H, Li CY (2013) Directed self-assembly of nanoparticles for nanomotors. ACS Nano 7:5192–5198CrossRef
    23.Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG (2014) Stimuli-responsive microjets with reconfigurable shape. Angew Chem Int Ed 53:2673–2677CrossRef
    24.Mou FZ, Chen CR, Zhong Q, Yin YX, Ma HR, Guan JG (2014) Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl Mater Interfaces 6:9897–9903CrossRef
    25.Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic motors for transport of colloidal cargo. Nano Lett 8:1271–1276CrossRef
    26.Gao W, Kagan D, Pak OS, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton EE, Zhang LF, Lauga E, Wang J (2012) Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8:460–467CrossRef
    27.Balasubramanian S, Kagan D, Hu CMJ, Campuzano S, Lobo-Castanon MJ, Lim N, Kang DY, Zimmerman M, Zhang LF, Wang J (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed 50:4161–4164CrossRef
    28.Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoci A, Wang J (2012) Bacterial isolation by lectin-modified microengines. Nano Lett 12:396–401CrossRef
    29.Gao W, Feng XM, Pei A, Gu YE, Li JX, Wang J (2013) Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5:4696–4700CrossRef
    30.Liu LM, Liu M, Su YJ, Dong YG, Zhou W, Zhang LN, Zhang H, Dong B, Chi LF (2015) Tadpole-like artificial micromotor. Nanoscale 7:2276–2280CrossRef
    31.Hedfors C, Ostmark E, Malmstrom E, Hult K, Martinelle M (2005) Thiol end-functionalization of poly(ε-caprolactone), catalyzed by Candida Antarctica lipase B. Macromolecules 38:647–649CrossRef
    32.Toshima N, Kuriyama M, Yamada Y, Hirai H (1981) Colloidal platinum catalyst for light-induced hydrogen evolution from water—a particle-size effect. Chem Lett 10:793–796CrossRef
    33.Wang XD, Duan YQ, Li CX, Lu Y (2015) Synthesis, self-assembly, and formation of polymer vesicle hydrogels of thermoresponsive copolymers. J Mater Sci 50:3541–3548. doi:10.​1007/​s10853-015-8911-6
    34.Ohzono T, Nishikawa T, Shimomura M (2004) One-step fabrication of polymer thin films with lithographic bas-relief micro-pattern and self-organized micro-porous structure. J Mater Sci 39:2243–2247. doi:10.​1023/​B:​JMSC.​0000017799.​20962.​4f CrossRef
    35.Kotov NA (2010) Inorganic nanoparticles as protein mimics. Science 330:188–189CrossRef
    36.Neouze MA (2013) Nanoparticle assemblies: main synthesis pathways and brief overview on some important applications. J Mater Sci 48:7321–7349. doi:10.​1007/​s10853-013-7542-z CrossRef
    37.Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169CrossRef
    38.Dong B, Wang WD, Miller DL, Li CY (2012) Polymer-single-crystal@nanoparticle nanosandwich for surface enhanced Raman spectroscopy. J Mater Chem 22:15526–15529CrossRef
    39.Zhang H, Dong B, Zhou T, Li CY (2012) Directed self-assembly of hetero-nanoparticles using a polymer single crystal template. Nanoscale 4:7641–7645CrossRef
    40.Moshfegh AZ (2009) Nanoparticle catalysts. J Phys D 42:233001CrossRef
    41.Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Autonomous movement and self-assembly. Angew Chem Int Ed 41:652–654CrossRef
    42.Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A (2006) Catalytically induced electrokinetics for motors and micropumps. J Am Chem Soc 128:14881–14888CrossRef
    43.Michelin S, Lauga E, Bartolo D (2013) Spontaneous autophoretic motion of isotropic particles. Phys Fluids 25:061701CrossRef
    44.Majumdar A, Marchetti MC, Virga EG (2014) Perspectives in active liquid crystals. Philos Trans A 372:20130372CrossRef
    45.Choi WY, Lee CM, Park HJ (2006) Development of biodegradable hot-melt adhesive based on poly-ε-caprolactone and soy protein isolate for food packaging system. Lwt-Food Sci Technol 39:591–597CrossRef
    46.Dong B, Miller DL, Li CY (2012) Polymer single crystal as magnetically recoverable support for nanocatalysts. J Phys Chem Lett 3:1346–1350CrossRef
  • 作者单位:Limei Liu (1)
    Mei Liu (1)
    Yonggang Dong (1)
    Wei Zhou (1)
    Lina Zhang (1)
    Yajun Su (1)
    Hui Zhang (1)
    Bin Dong (1)

    1. Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center (CIC) of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, Jiangsu, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
In this paper, we report the facile fabrication of a sheet-like polymer-based micromotor through the combination of spin coating, self-assembly, and sonication techniques. By carefully adjusting the construction conditions, such as the solution concentration, spin coating speed, and the sonication time, the size of the resulting micromotor can be finely tuned. The utilization of the polymeric materials inside a micromotor brings several advantages, such as the thermal property and the encapsulation of functional materials. As a consequence, the resulting micromotors can not only undergo shape variation from sheets to spheres at an elevated temperature but also exhibit the magnetic response based on the encapsulated magnetic nanoparticles. Furthermore, by combining these two different properties, a new strategy to realize the controlled cargo capture, transport and release based on the polymer’s softening property is proposed in this work. The low cost, easy processing, and versatile functions make current micromotor, an attractive candidate for practical applications, such as targeted drug delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700