The integration characteristics of the exogenous growth hormone gene in a transgenic common carp (Cyprinus carpio L.) with fast-growth performance
详细信息    查看全文
  • 作者:Ji Chen ; Qing Luo ; Hairong Bao ; Lanjie Liao ; Yongming Li ; Zuoyan Zhu
  • 关键词:Common carp ; Growth hormone ; Transgene ; Integration site ; Copy number
  • 刊名:Chinese Science Bulletin
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:60
  • 期:19
  • 页码:1654-1660
  • 全文大小:1,378 KB
  • 参考文献:1.Zhang Z, Chen J, Li L et al (2014) Research advances in animal distant hybridization. Sci China Life Sci 57:889-02CrossRef
    2.Hu W, Wang YP, Zhu ZY (2007) Progress in the evaluation of transgenic fish for possible ecological risk and its containment strategies. Sci China Ser C-Life Sci 50:573-79CrossRef
    3.Hu W, Zhu ZY (2010) Integration mechanisms of transgenes and population fitness of GH transgenic fish. Sci China Life Sci 53:401-08CrossRef
    4.Chen J, Hu W, Zhu ZY (2013) Progress in studies of fish reproductive development regulation. Chin Sci Bull 58:7-6CrossRef
    5.Gui JF, Zhu ZY (2012) Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin Sci Bull 57:1751-760CrossRef
    6.Zhong CR, Song YL, Wang YP et al (2012) Growth hormone transgene effects on growth performance are inconsistent among offspring derived from different homozygous transgenic common carp (Cyprinus carpio L.). Aquaculture 356-57:404-11CrossRef
    7.Asakawa K, Suster ML, Mizusawa K et al (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105:1255-260CrossRef
    8.Hackett PB, Alvarez MC (2000) The molecular genetics of transgenic fish. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology, vol 4., Aquaculture, part B: fishesScience Publishers, Enfield, NH, pp 77-45
    9.Rocha A, Ruiz S, Estepa A et al (2004) Application of inducible and targeted gene strategies to produce transgenic fish: a review. Mar Biotechnol (NY) 6:118-27
    10.Dai J, Cui XJ, Zhu ZY et al (2010) Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos. Int J Biol Sci 6:756-68CrossRef
    11.Uh M, Khattra J, Devlin RH (2006) Transgene constructs in coho salmon (Oncorhynchus kisutch) are repeated in a head-to-tail fashion and can be integrated adjacent to horizontally transmitted parasite DNA. Transgenic Res 15:711-27CrossRef
    12.Collas P (1998) Modulation of plasmid DNA methylation and expression in zebrafish embryos. Nucleic Acids Res 26:4454-461CrossRef
    13.Manuelidis L (1991) Heterochromatic features of an 11-megabase transgene in brain cells. Proc Natl Acad Sci USA 88:1049-053CrossRef
    14.McBurney MW, Mai T, Yang X et al (2002) Evidence for repeat-induced gene silencing in cultured mammalian cells: inactivation of tandem repeats of transfected genes. Exp Cell Res 274:1-CrossRef
    15.Williams A, Harker N, Ktistaki E et al (2008) Position effect variegation and imprinting of transgenes in lymphocytes. Nucleic Acids Res 36:2320-329CrossRef
    16.Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219:243-50CrossRef
    17.Liang Z, Breman AM, Grimes BR et al (2008) Identifying and genotyping transgene integration loci. Transgenic Res 17:979-83CrossRef
    18.Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305-20CrossRef
    19.Zambrowicz BP, Imamoto A, Fiering S et al (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to wide-spread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94:3789-794CrossRef
    20.Irion S, Luche H, Gadue P et al (2007) Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25:1477-482CrossRef
    21.DeKelver RC, Choi VM, Moehle EA et al (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20:1133-142CrossRef
    22.Nam YK, Cho YS, Cho HJ et al (2002) Accelerated growth performance and stable germ-line transmission in androgenetically derived homozygous transgenic mud loach, Misgurnus mizolepis. Aquaculture 209:257-70CrossRef
    23.Hew CL, Fletcher GL (2001) The role of aquatic biotechnology in aquaculture. Aquaculture 197:191-04CrossRef
    24.Devlin RH, Yesaki TY, Donaldson EM et al (1995) Transmission and phenotypic effects of an antifreeze GH gene construct in coho salmon (Oncorhynchus kisutch). Aquaculture 137:161-69CrossRef
    25.Maclean N, Rahman M, Sohm F et al (2002) Transgenic tilapia and the tilapia genome. Gene 295:265-77CrossRef
    26.Dunham R, Chitmanat C, Nichols A et al (1999) Predator avoidance of transgenic channel catfish containing salmonid growth hormone genes. Mar Biotechnol 1:545-51CrossRef
    27.Venugopal T, Anathy V, Kirankumar S et al (2004) Growth enhancement and food conversion efficiency of transgenic fish Labeo rohita. J Exp Zool 301:477-90CrossRef
    28.Nam YK, Noh JK, Cho YS et al (2001) Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Res 10:353-62CrossRef
    29.Pitkanen TI, Krasnov A, Teerijoki H et al (1999) Transfer of growth hormone (GH) transgenes into Arcti
  • 作者单位:Ji Chen (1)
    Qing Luo (1) (2)
    Hairong Bao (1)
    Lanjie Liao (1)
    Yongming Li (1)
    Zuoyan Zhu (1)
    Yaping Wang (1)
    Wei Hu (1)

    1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
The genetic stability and expression efficiency of exogenous genes in transgenic animals are closely related to integration site and copy number. In our laboratory, by transgenic manipulation and subsequent test crosses, we established an “all-fish-growth hormone (GH) transgenic common carp family that exhibits fast growth. In this present study, genome walking, real-time quantitative polymerase chain reaction, and fluorescence in situ hybridization techniques were applied to identify the integration characteristics of the exogenous grass carp GH gene in the transgenic common carp. The exogenous GH genes, in the form of two complete and one incomplete tandem repeats, were found to have integrated into an AT-rich region near the end of a chromosome pair. We hypothesize that the high efficiency of exogenous GH gene expression might be due to the low copy number in the genome and the AT-rich integration site. Keywords Common carp Growth hormone Transgene Integration site Copy number

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700