Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae)
详细信息    查看全文
  • 作者:Xingfei Zheng (1)
    Cheng Pan (1)
    Ying Diao (1) (2)
    Yongning You (1)
    Chaozhu Yang (3)
    Zhongli Hu (1)
  • 关键词:Amorphophallus ; Microsatellite marker ; Transcriptome ; Genetic diversity
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:406KB
  • 参考文献:1. Gille S, Cheng K, Skinner ME, Liepman AH, Wilkerson CG, Pauly M: Deep sequencing of voodoo lily (Amorphophallus konjac): an approach to identify relevant genes involved in the synthesis of the hemicellulose glucomannan. / Planta 2011,234(3):515-26. CrossRef
    2. Chua M, Baldwin TC, Hocking TJ, Chan K: Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex NE Br. / J Ethnopharmacol 2010,128(2):268-78. CrossRef
    3. Hetterscheid W, Ittenbach S: Everything you always wanted to know about Amorphophallus, but were afraid to stick your nose into. / Aroideana 1996, 19:7-31.
    4. Sood N, Baker WL, Coleman CI: Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. / Am J Clin Nutr 2008,88(4):1167-175.
    5. Arvill A, Bodin L: Effect of short-term ingestion of konjac glucomannan on serum cholesterol in healthy men. / Am J Clin Nutr 1995,61(3):585-89.
    6. Chauhan K, Brandham P: Chromosome and DNA variation in Amorphophallus (Araceae). / Kew Bulletin 1985,40(4):745-58. CrossRef
    7. X-q CUN, Y-c LU, QUAN H, Q-y ZHAO, S-q XIE: Yield and Quality Analysis of Different Varieties of Amorphophsllus konjac in Yunnan Province. / J Yunnan Agric Univ 2009, 5:027.
    8. D-h ZHANG, Q-p WANG, Z-b DUAN, K-x MI: Mechanism of Relay Multi-seedling Release Amorphophallus bulbifer and Its Application in Southeast Asia. / Resour Dev Market 2009, 8:004.
    9. Das D, Mondal S, Roy SK, Maiti D, Bhunia B, Maiti TK, Islam SS: Isolation and characterization of a heteropolysaccharide from the corm of Amorphophallus campanulatus. / Carbohydr Res 2009,344(18):2581-585. CrossRef
    10. Lekhak MM, Yadav SR: Cytotaxonomy of some species of Amorphophallus sect. Rhaphiophallus (Schott) Engl. (Araceae) of the Indian Subcontinent. / Nucleus 2011,54(3):169-76. CrossRef
    11. Santosa E, Mine Y, Nakata M, Lian C, Sugiyama N: Genetic diversity of cultivated elephant foot yam (Amorphophallus paeoniifolius) in Kuningan, West Java as revealed by microsatellite markers. / Complimentary Copy 2010,12(2):125-28.
    12. Grob G, Gravendeel B, Eurlings M: Potential phylogenetic utility of the nuclear FLORICAULA/LEAFY second intron: comparison with three chloroplast DNA regions in Amorphophallus (Araceae). / Mol Phylogenet Evol 2004,30(1):13-3. CrossRef
    13. Sedayu A, Eurlings MCM, Gravendeel B, Hetterscheid WLA: Morphological character evolution of Amorphophallus (Araceae) based on a combined phylogenetic analysis of trnL, rbcL and LEAFY second intron sequences. / Bot Stud 2010,51(4):473-90.
    14. Wenbing C, Chunlin L, Jianfu Z: Study on genetic diversity of RAPD markers in Amorphophallus. / J Agric Biotechnol 2001, 4:024.
    15. Santosa E, Lian C, Pisooksantivatana Y, Sugiyama N: Isolation and characterization of polymorphic microsatellite markers in Amorphophallus paeoniifolius (Dennst.) Nicolson, Araceae. / Mol Ecol Notes 2007,7(5):814-17. CrossRef
    16. Pan C, You Y, Diao Y, Hu Z, Chen J: Isolation and characterization of microsatellite loci for the herbaceous tuber crop, Amorphophallus konjac (Araceae). / Genet Mol Res 2012,11(4):4617-621. CrossRef
    17. Hao C, Zhang X, Wang L, Dong Y, Shang X, Jia J: Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China. / Mol breeding 2006,17(1):69-7. CrossRef
    18. Barkley NA, Roose ML, Krueger RR, Federici CT: Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). / Theor Appl Genet 2006,112(8):1519-531. CrossRef
    19. Folkertsma RT, Rattunde HFW, Chandra S, Raju GS, Hash CT: The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. / Theor Appl Genet 2005,111(3):399-09. CrossRef
    20. Song Z, Xu X, Wang B, Chen J, Lu B-R: Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. / Theor Appl Genet 2003,107(8):1492-499. CrossRef
    21. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I: Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. / Theor Appl Genet 2003,107(4):736-44. CrossRef
    22. Gupta P, Varshney R: The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. / Euphytica 2000,113(3):163-85. CrossRef
    23. Bozhko M, Riegel R, Schubert R, Müller?Starck G: A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil?born salinity. / Mol Ecol 2003,12(11):3147-155. CrossRef
    24. Varshney RK, Graner A, Sorrells ME: Genic microsatellite markers in plants: features and applications. / Trends Biotechnol 2005,23(1):48-5. CrossRef
    25. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ: Analysis of SSRs derived from grape ESTs. / TAG Theor Appl Genet 2000,100(5):723-26. CrossRef
    26. Yu JK, La Rota M, Kantety R, Sorrells M: EST derived SSR markers for comparative mapping in wheat and rice. / Mol Genet Genomics 2004,271(6):742-51. CrossRef
    27. Luro F, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R: Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. / BMC Genomics 2008,9(1):287. CrossRef
    28. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q: Full-length transcriptome assembly from RNA-Seq data without a reference genome. / Nat Biotechnol 2011,29(7):644-52. CrossRef
    29. Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. / Methods Mol Biol 2000,132(3):365-86.
    30. Beaumont MA: Adaptation and speciation: what can F ST tell us? / Trends Ecol Evol 2005,20(8):435-40. CrossRef
    31. Plaschke J, Ganal M, R?der M: Detection of genetic diversity in closely related bread wheat using microsatellite markers. / TAG Theor Appl Genet 1995,91(6):1001-007.
    32. Vasem?gi A, Nilsson J, Primmer CR: Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). / Mol Biol Evol 2005,22(4):1067-076. CrossRef
    33. Varshney R, Grosse I, H?hnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A: Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. / TAG Theor Appl Genet 2006,113(2):239-50. CrossRef
    34. Peng J, Lapitan NLV: Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. / Funct Integr Genomics 2005,5(2):80-6. CrossRef
    35. Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L: Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. / TAG Theor Appl Genet 2007,114(2):359-72. CrossRef
    36. Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe BA, Wang Y: Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. / BMC Genomics 2010,11(1):94. CrossRef
    37. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R: Computational and experimental characterization of physically clustered simple sequence repeats in plants. / Genetics 2000,156(2):847-54.
    38. Varshney RK, Thiel T, Stein N, Langridge P, Graner A: In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. / Cell Mol Biol Lett 2002,7(2A):537-46.
    39. Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Raje RS, Bandhopadhya TK: Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. / BMC Plant Biol 2011,11(1):17. CrossRef
    40. Xu Y, Ma R-C, Xie H, Liu J-T, Cao M-Q: Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. / Genome 2004,47(6):1091-104. CrossRef
    41. Rungis D, Berube Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K: Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. / TAG Theor Appl Genet 2004,109(6):1283-294. CrossRef
    42. Gong L, Stift G, Kofler R, Pachner M, Lelley T: Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. / TAG Theor Appl Genet 2008,117(1):37-8. CrossRef
    43. Fraser L, Harvey C, Crowhurst R, Silva HND: EST-derived microsatellites from Actinidia species and their potential for mapping. / TAG Theor Appl Genet 2004,108(6):1010-016. CrossRef
    44. Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD: Tall fescue EST-SSR markers with transferability across several grass species. / TAG Theor Appl Genet 2004,109(4):783-91. CrossRef
    45. Gao L, Tang J, Li H, Jia J: Analysis of microsatellites in major crops assessed by computational and experimental approaches. / Mol breeding 2003,12(3):245-61. CrossRef
    46. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y: De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). / BMC Genomics 2010,11(1):726. CrossRef
    47. Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, De Kochko A, Hamon P: SSR mining in coffee tree EST databases: potential use of EST–SSRs as markers for the Coffea genus. / Mol Genet Genomics 2006,276(5):436-49. CrossRef
    48. Liang X, Chen X, Hong Y, Liu H, Liu H, Zhou G, Li S, Guo B: Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. / BMC Plant Biol 2009,9(1):35. CrossRef
    49. Thiel T, Michalek W, Varshney R, Graner A: Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). / Theor appl genet 2003,106(3):411-22.
    50. Kantety RV, La Rota M, Matthews DE, Sorrells ME: Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. / Plant Mol Biol 2002,48(5):501-10. CrossRef
    51. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A: Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. / Mol Biol Evol 1998,15(10):1275-287. CrossRef
    52. Zhangying W, Jun L, Zhongxia L, Lifei H, Boping F, Yujun L, Jingyi C, Xiongjian Z: Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). / BMC Plant Biol 2011,11(1):139. CrossRef
    53. La Rota M, Kantety R, Yu JK, Sorrells M: Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. / BMC Genomics 2005,6(1):23. CrossRef
    54. Morgante M, Hanafey M, Powell W: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. / Nat Genet 2002,30(2):194-00. CrossRef
    55. Gupta P, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H: Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. / Mol Genet Genomics 2003,270(4):315-23. CrossRef
    56. Bory S, Da Silva D, Risterucci AM, Grisoni M, Besse P, Duval MF: Development of microsatellite markers in cultivated vanilla: Polymorphism and transferability to other vanilla species. / SciHortic-Amsterdam 2008,115(4):420-25. CrossRef
    57. Vendramin E, Dettori M, Giovinazzi J, Micali S, Quarta R, Verde I: A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. / Mol Ecol Notes 2007,7(2):307-10. CrossRef
    58. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ: Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. / Plant Sci 2001,160(6):1115-123. CrossRef
    59. Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrells ME: Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. / Genome 2004,47(5):805-18. CrossRef
    60. Varshney RK, Sigmund R, B?rner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A: Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. / Plant Sci 2005,168(1):195-02. CrossRef
    61. Ellis J, Burke J: EST-SSRs as a resource for population genetic analyses. / Heredity 2007,99(2):125-32. CrossRef
    62. Porebski S, Bailey LG, Baum BR: Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. / Plant Mol Biol Rep 1997,15(1):8-5. CrossRef
    63. Han YC, Teng CZ, Hu ZL, Song YC: An optimal method of DNA silver staining in polyacrylamide gels. / Electrophoresis 2008,29(6):1355-358. CrossRef
    64. Botstein D, White RL, Skolnick M, Davis RW: Construction of a genetic linkage map in man using restriction fragment length polymorphisms. / Am J Hum Genet 1980,32(3):314.
    65. Rolf J: / Numerical Taxonomy and Multivariate Analysis System, version 2.11 T Exeter Software. Setauket, NY, USA; 2000.
    66. Flegr J, Hrda S, Pavlicek A: Free-tree--freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. / Folia Biol 1999,45(3):97.
  • 作者单位:Xingfei Zheng (1)
    Cheng Pan (1)
    Ying Diao (1) (2)
    Yongning You (1)
    Chaozhu Yang (3)
    Zhongli Hu (1)

    1. State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, PR China
    2. College of Forestry and Life Sciences, Chongqing University of Arts and Sciences, 402160, Yongchuan, Chongqing, PR China
    3. Agricultural Science Academy of Enshi Autonomous Prefecture, Enshi, Hubei, 445002, PR China
文摘
Background Amorphophallus is a genus of perennial plants widely distributed in the tropics or subtropics of West Africa and South Asia. Its corms contain a high level of water-soluble glucomannan; therefore, it has long been used as a medicinal herb and food source. Genetic studies of Amorphophallus have been hindered by a lack of genetic markers. A large number of molecular markers are required for genetic diversity study and improving disease resistance in Amorphophallus. Here, we report large scale of transcriptome sequencing of two species: Amorphophallus konjac and Amorphophallus bulbifer using deep sequencing technology, and microsatellite (SSR) markers were identified based on these transcriptome sequences. Results cDNAs of A. konjac and A. bulbifer were sequenced using Illumina HiSeq?2000 sequencing technology. A total of 135,822 non-redundant unigenes were assembled from about 9.66 gigabases, and 19,596 SSRs were identified in 16,027 non-redundant unigenes. Di-nucleotide SSRs were the most abundant motif (61.6%), followed by tri- (30.3%), tetra- (5.6%), penta- (1.5%), and hexa-nucleotides (1%) repeats. The top di- and tri-nucleotide repeat motifs included AG/CT (45.2%) and AGG/CCT (7.1%), respectively. A total of 10,754 primer pairs were designed for marker development. Of these, 320 primers were synthesized and used for validation of amplification and assessment of polymorphisms in 25 individual plants. The total of 275 primer pairs yielded PCR amplification products, of which 205 were polymorphic. The number of alleles ranged from 2 to 14 and the polymorphism information content valued ranged from 0.10 to 0.90. Genetic diversity analysis was done using 177 highly polymorphic SSR markers. A phenogram based on Jaccard’s similarity coefficients was constructed, which showed a distinct cluster of 25 Amorphophallus individuals. Conclusion A total of 10,754 SSR markers have been identified in Amorphophallus using transcriptome sequencing. One hundred and seventy-seven polymorphic markers were successfully validated in 25 individuals. The large number of genetic markers developed in the present study should contribute greatly to research into genetic diversity and germplasm characterization in Amorphophallus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700