Synthesis of TiO2鈥揜educed Graphene Oxide Nanocomposites for Efficient Adsorption and Photodegradation of Herbicides
详细信息    查看全文
  • 作者:Xue Liu ; Huijie Hong ; Xiaoli Wu ; Yanhua Wu ; Yongqiang Ma…
  • 关键词:Reduced graphene oxide ; TiO2 ; Herbicides ; Photodegradation ; Sunlight
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:227
  • 期:1
  • 全文大小:1,705 KB
  • 参考文献:Akhavan, O., & Ghaderi, E. (2009). Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. Journal of Physical Chemistry C, 113, 20214鈥?0220.CrossRef
    Chang, Y. N., Ou, X. M., Zeng, G. M., Gong, J. L., Deng, C. H., Jiang, Y., Liang, J., Yuan, G. Q., Liu, H. Y., & He, X. (2015). Synthesis of magnetic graphene oxide鈥揟iO2 and their antibacterial properties under solar irradiation. Applied Surface Science, 343, 1鈥?0.CrossRef
    Chen, C., Cai, W. M., Long, M. C., Zhou, B. X., Wu, Y. H., Wu, D. Y., & Feng, Y. J. (2010). Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano, 4, 6425鈥?432.CrossRef
    Ding, Y. H., Zhang, P., Zhuo, Q., Ren, H. M., Yang, Z. M., & Jiang, Y. (2011). A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology, 22, 21560121.
    Dong, X. F., Liang, S. X., Shi, Z. H., & Sun, H. W. (2016). Development of multi-residue analysis of herbicides in cereal grain by ultra-performance liquid chromatography鈥揺lectrospray ionization-mass spectrometry. Food Chemistry, 192, 432鈥?40.CrossRef
    Ellegaard-Jensen, L., Aamand, J., Kragelund, B. B., Johnsen, A. H., & Rosendahl, S. (2013). Strains of the soil fungus Mortierellas how different degradation potentials for the phenylurea herbicide diuron. Biodegradation, 24, 765鈥?74.CrossRef
    Elsayed, O. F., Maillard, E., Vuilleumier, S., Millet, M., & Imfeld, G. (2015). Degradation of chloroacetanilide herbicides and bacterial community composition in lab-cale wetlands. Science of the Total Environment, 520, 222鈥?31.CrossRef
    Englert, J. M., R枚hrl, J., Schmidt, C. D., Graupner, R., Hundhausen, M., Hauke, F., & Hirsch, A. (2009). Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Advanced Materials, 21, 4265鈥?269.CrossRef
    Evgenidou, E., & Fytianos, K. (2002). Photodegradation of triazine herbicides in aqueous solutions and natural waters. Journal of Agricultural and Food Chemistry, 50, 6423鈥?427.CrossRef
    Gao, Y. Y., Pu, X. P., Zhang, D. F., Ding, G. Q., Shao, X., & Ma, J. (2012). Combustion synthesis of graphene oxide鈥揟iO2 hybrid materials for photodegradation of methyl orange. Carbon, 50, 4093鈥?101.CrossRef
    Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 9, 1鈥?2.CrossRef
    Grube, A., Donaldson, D., Kiely, T., & Wu, L. (2011). Pesticides industry sales and usage. US: Environmental Protection Agency.
    Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339鈥?339.CrossRef
    Huovinen, M., Loikkanen, J., Naarala, J., & V盲h盲kangas, K. (2015). Toxicity of diuron in human cancer cells. Toxicology in Vitro, 29, 1577鈥?586.CrossRef
    Jang, H. D., Kim, S. K., Chang, H., Roh, K. M., Choi, J. W., & Huang, J. X. (2012). A glucose biosensor based on TiO2-graphene composite. Biosensors & Bioelectronics, 38, 184鈥?88.CrossRef
    Jensen, G. V., Bremholm, M., Lock, N., Deen, G. R., Jensen, T. R., Iversen, B. B., Niederberger, M., Pedersen, J. S., & Birkedal, H. (2010). Anisotropic crystal growth kinetics of anatase TiO2 nanoparticles synthesized in a nonaqueous medium. Chemistry of Materials, 22, 6044鈥?055.CrossRef
    Liu, X. P., Tang, Y. H., Luo, S. L., Wang, Y., Zhang, X. L., Chen, Y., & Liu, C. B. (2013). Reduced graphene oxide and CuInS2 co-decorated TiO2 nanotube arrays for efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water. Journal of Photochemistry and Photobiology A-Chemistry, 262, 22鈥?7.CrossRef
    Liu, X. L., Wang, C., Wu, Q. H., & Wang, Z. (2015). Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. Analytica Chimica Acta, 870, 67鈥?4.CrossRef
    Main, A. R., Headle, J. V., Peru, K. M., Michel, N. L., Cessna, A. J., & Morrissey, C. A. (2014). Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada鈥檚 prairie pothole region. PLoS ONE, 9, e91821.CrossRef
    Moisset, S., Tiam, S. K., Feurtet-Mazel, A., Morin, S., Delmas, F., Mazzella, N., & Gonzalez, P. (2015). Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures. Environmental Science and Pollution Research, 22, 4046鈥?055.CrossRef
    Nguyen-Phan, T., Pham, V. H., Shin, E. W., Pham, H. D., Kim, S., Chung, J. S., Kim, E. J., & Hur, S. H. (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide nanocomposites. Chemical Engineering Journal, 170, 226鈥?32.CrossRef
    Paule, A., Biaz, A., Leflaive, J., Lawrence, J. R., & Rols, J. L. (2015). Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures. Water, Air, and Soil Pollution, 226, 10.鈥?007/鈥媠11270-014-2282-5 .
    Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y., & Balkus, K. J. (2012). Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2, 949鈥?56.CrossRef
    Ramadoss, A., & Kim, S. J. (2013). Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon, 63, 434鈥?45.CrossRef
    Shah, M. A. S. A., Park, A. R., Zhang, K., Park, J. H., & Yoo, P. J. (2012). Green synthesis of biphasic-TiO2 reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 4, 3893鈥?901.CrossRef
    Shao, Y., Cao, C. S., Chen, S. L., He, M., Fang, J. L., Chen, J., Li, X. F., & Li, D. Z. (2015). Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan. Applied Catalysis, B: Environmental, 179, 344鈥?51.CrossRef
    Tang, Y. H., Zhang, G., Liu, C. B., Luo, S. L., Xu, X. L., Chen, L., & Wang, B. G. (2013). Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. Journal of Hazardous Materials, 252鈥?53, 115鈥?22.CrossRef
    Wang, F., & Zhang, K. (2011). Reduced graphene oxide鈥揟iO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A: Chemical, 345, 101鈥?07.CrossRef
    Wang, P. X., Xian, J. J., Chen, J., He, Y. H., Wang, J. X., Li, W. J., Shao, Y., & Li, D. Z. (2014). Preparation, photocatalytic activity, and mechanism of Cd2Sb2O6.8-graphene composite. Applied Catalysis, B: Environmental, 144, 644鈥?53.CrossRef
    Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487鈥?491.CrossRef
    Yang, M. Q., Zhang, N., & Xu, Y. J. (2013). Synthesis of fullerene鈭? carbon nanotube鈭? and graphene鈭扵iO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Applied Materials & Interfaces, 5, 1156鈥?164.CrossRef
    Zhang, H., Lv, X. J., Li, Y. M., Wang, Y., & Li, J. H. (2010). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4, 380鈥?86.CrossRef
  • 作者单位:Xue Liu (1)
    Huijie Hong (2)
    Xiaoli Wu (1)
    Yanhua Wu (1)
    Yongqiang Ma (1)
    Wenbi Guan (1)
    Yong Ye (2)

    1. Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, People鈥檚 Republic of China
    2. Phosphorus Chemical Engineering Research Center of Henan Province, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, People鈥檚 Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
The elimination of herbicides in aquatic environment is influenced by various biotic or abiotic factors. Thus, efficient, more applicable, and flexible methods are in demand. Photodegradation has been applied to remove three main types of herbicides, phenylurea, triazine, and chloroacetanilide, from water, based on a series of TiO2鈥搑educed graphene oxide nanocomposites. Experimental results showed that the three types of herbicides could be mostly removed under simulated sunlight irradiation for 5 h with the as-prepared photocatalyst. Compared with pure TiO2 or P25, the photodegradation efficiency has been markedly increased. Thus, the present work could promote a new strategy dealing with the pollution of herbicides in aquatic ecosystems. Keywords Reduced graphene oxide TiO2 Herbicides Photodegradation Sunlight

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700