Characterization of promoter of the tuberculosis-resistant gene intracellular pathogen resistance 1
详细信息    查看全文
  • 作者:Yongyan Wu ; Fayang Liu ; Yan Zhang ; Yongsheng Wang ; Zekun Guo…
  • 关键词:Ipr1 ; Gene promoter ; Stat1 ; IFN ; γ ; Mycobacterium
  • 刊名:Immunologic Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:64
  • 期:1
  • 页码:143-154
  • 全文大小:1,068 KB
  • 参考文献:1.Zumla AI, Gillespie SH, Hoelscher M, Philips PP, Cole ST, Abubakar I, et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis. 2014;14(4):327–40. doi:10.​1016/​S1473-3099(13)70328-1 .CrossRef PubMed
    2.Wang J, Yang K, Zhou L, Minhaowu WuY, Zhu M, et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog. 2013;9(10):e1003697. doi:10.​1371/​journal.​ppat.​1003697 .PubMedCentral CrossRef PubMed
    3.Lu C, Wu J, Wang H, Wang S, Diao N, Wang F, et al. Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PLoS One. 2011;6(8):e24290. doi:10.​1371/​journal.​pone.​0024290 .PubMedCentral CrossRef PubMed
    4.Apt A, Kramnik I. Man and mouse TB: contradictions and solutions. Tuberculosis. 2009;89(3):195–8. doi:10.​1016/​j.​tube.​2009.​02.​002 .PubMedCentral CrossRef PubMed
    5.Shepelkova G, Pommerenke C, Alberts R, Geffers R, Evstifeev V, Apt A, et al. Analysis of the lung transcriptome in Mycobacterium tuberculosis-infected mice reveals major differences in immune response pathways between TB-susceptible and resistant hosts. Tuberculosis. 2013;93(2):263–9. doi:10.​1016/​j.​tube.​2012.​11.​007 .CrossRef PubMed
    6.Chackerian AA, Behar SM. Susceptibility to Mycobacterium tuberculosis: lessons from inbred strains of mice. Tuberculosis. 2003;83(5):279–85.CrossRef PubMed
    7.Niazi MK, Dhulekar N, Schmidt D, Major S, Cooper R, Abeijon C, et al. Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune competent mice. Dis Models Mech. 2015. doi:10.​1242/​dmm.​020867 .
    8.Turner OC, Keefe RG, Sugawara I, Yamada H, Orme IM. SWR mice are highly susceptible to pulmonary infection with Mycobacterium tuberculosis. Infect Immun. 2003;71(9):5266–72.PubMedCentral CrossRef PubMed
    9.Chiodini RJ, Buergelt CD. Susceptibility of Balb/c, C57/B6 and C57/B10 mice to infection with Mycobacterium paratuberculosis. J Comp Pathol. 1993;109(4):309–19.CrossRef PubMed
    10.Marcinek P, Jha AN, Shinde V, Sundaramoorthy A, Rajkumar R, Suryadevara NC, et al. LRRK2 and RIPK2 variants in the NOD 2-mediated signaling pathway are associated with susceptibility to Mycobacterium leprae in Indian populations. PLoS One. 2013;8(8):e73103. doi:10.​1371/​journal.​pone.​0073103 .PubMedCentral CrossRef PubMed
    11.Salie M, van der Merwe L, Moller M, Daya M, van der Spuy GD, van Helden PD, et al. Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. J Infect Dis. 2014;209(2):216–23. doi:10.​1093/​infdis/​jit443 .PubMedCentral CrossRef PubMed
    12.Sun L, Jin YQ, Shen C, Qi H, Chu P, Yin QQ, et al. Genetic contribution of CISH promoter polymorphisms to susceptibility to tuberculosis in Chinese children. PLoS One. 2014;9(3):e92020. doi:10.​1371/​journal.​pone.​0092020 .PubMedCentral CrossRef PubMed
    13.Kramnik I, Dietrich WF, Demant P, Bloom BR. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2000;97(15):8560–5. doi:10.​1073/​pnas.​150227197 .PubMedCentral CrossRef PubMed
    14.Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature. 2005;434(7034):767–72. doi:10.​1038/​nature03419 .PubMedCentral CrossRef PubMed
    15.He XN, Su F, Lou ZZ, Jia WZ, Song YL, Chang HY, et al. Ipr1 gene mediates RAW 264.7 macrophage cell line resistance to Mycobacterium bovis. Scand J Immunol. 2011;74(5):438–44. doi:10.​1111/​j.​1365-3083.​2011.​02596.​x .CrossRef PubMed
    16.Wang YS, He X, Du Y, Su J, Gao M, Ma Y, et al. Transgenic cattle produced by nuclear transfer of fetal fibroblasts carrying Ipr1 gene at a specific locus. Theriogenology. 2015. doi:10.​1016/​j.​theriogenology.​2015.​04.​016 .
    17.Davis BK. Isolation, culture, and functional evaluation of bone marrow-derived macrophages. Methods Mol Biol. 2013;1031:27–35. doi:10.​1007/​978-1-62703-481-4_​3 .CrossRef PubMed
    18.Cai L, Pan H, Trzcinski K, Thompson CM, Wu Q, Kramnik I. MYBBP1A: a new Ipr1’s binding protein in mice. Mol Biol Rep. 2010;37(8):3863–8. doi:10.​1007/​s11033-010-0042-1 .PubMedCentral CrossRef PubMed
    19.Lee JW, Bae CJ, Choi YJ, Kim SI, Kwon YS, Lee HJ, et al. 3,4,5-Trihydroxycinnamic acid inhibits lipopolysaccharide (LPS)-induced inflammation by Nrf2 activation in vitro and improves survival of mice in LPS-induced endotoxemia model in vivo. Mol Cell Biochem. 2014;390(1–2):143–53. doi:10.​1007/​s11010-014-1965-y .CrossRef PubMed
    20.Portevin D, Pfluger V, Otieno P, Brunisholz R, Vogel G, Daubenberger C. Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands. BMC Biotechnol. 2015;15:24. doi:10.​1186/​s12896-015-0140-1 .PubMedCentral CrossRef PubMed
    21.Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, et al. Databases on transcriptional regulation: TRANSFAC TRRD and COMPEL. Nucleic Acids Res. 1998;26(1):362–7.PubMedCentral CrossRef PubMed
    22.Chekmenev DS, Haid C, Kel AE. P-Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res. 2005;33(Web Server issue):W432-7. doi:10.​1093/​nar/​gki441 . PubMed
    23.Brien JD, Daffis S, Lazear HM, Cho H, Suthar MS, Gale M Jr, et al. Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8(+) T cell immune responses against West Nile virus infection. PLoS Pathog. 2011;7(9):e1002230. doi:10.​1371/​journal.​ppat.​1002230 .PubMedCentral CrossRef PubMed
    24.Reinhard K, Huber M, Wostl C, Hellhund A, Toboldt A, Abass E, et al. c-Rel promotes type 1 and type 17 immune responses during Leishmania major infection. Eur J Immunol. 2011;41(5):1388–98. doi:10.​1002/​eji.​201041056 .CrossRef PubMed
    25.Rieder G, Tessier AJ, Qiao XT, Madison B, Gumucio DL, Merchant JL. Helicobacter-induced intestinal metaplasia in the stomach correlates with Elk-1 and serum response factor induction of villin. J Biol Chem. 2005;280(6):4906–12. doi:10.​1074/​jbc.​M413399200 .CrossRef PubMed
    26.Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet. 2014;15(5):307–20. doi:10.​1038/​nrg3664 .CrossRef PubMed
    27.Palfi G, Dutour O, Perrin P, Sola C, Zink A. Tuberculosis in evolution. Tuberculosis. 2015;95(Suppl 1):S1–3. doi:10.​1016/​j.​tube.​2015.​04.​007 .CrossRef PubMed
    28.Croucher NJ, Didelot X. The application of genomics to tracing bacterial pathogen transmission. Curr Opin Microbiol. 2015;23:62–7. doi:10.​1016/​j.​mib.​2014.​11.​004 .CrossRef PubMed
    29.Fox GJ, Sy DN, Nhung NV, Yu B, Ellis MK, Van Hung N, et al. Polymorphisms of SP110 are associated with both pulmonary and extra-pulmonary tuberculosis among the Vietnamese. PLoS One. 2014;9(7):e99496. doi:10.​1371/​journal.​pone.​0099496 .PubMedCentral CrossRef PubMed
    30.Cai L, Deng SL, Liang L, Pan H, Zhou J, Wang MY, et al. Identification of genetic associations of SP110/MYBBP1A/RELA with pulmonary tuberculosis in the Chinese Han population. Hum Genet. 2013;132(3):265–73. doi:10.​1007/​s00439-012-1244-5 .CrossRef PubMed
    31.Liang L, Zhao YL, Yue J, Liu JF, Han M, Wang H, et al. Association of SP110 gene polymorphisms with susceptibility to tuberculosis in a Chinese population. Infect Genet Evol. 2011;11(5):934–9. doi:10.​1016/​j.​meegid.​2011.​02.​017 .CrossRef PubMed
    32.Abhimanyu Jha P, Jain A, Arora K, Bose M. Genetic association study suggests a role for SP110 variants in lymph node tuberculosis but not pulmonary tuberculosis in north Indians. Hum Immunol. 2011;72(7):576–80. doi:10.​1016/​j.​humimm.​2011.​03.​014 .CrossRef PubMed
    33.Moller M, de Wit E, Hoal EG. Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol Med Microbiol. 2010;58(1):3–26. doi:10.​1111/​j.​1574-695X.​2009.​00600.​x .CrossRef PubMed
    34.Wu L, Deng H, Zheng Y, Mansjo M, Zheng X, Hu Y, et al. An association study of NRAMP1, VDR, MBL and their interaction with the susceptibility to tuberculosis in a Chinese population. Int J Infect Dis. 2015;38:129–35. doi:10.​1016/​j.​ijid.​2015.​08.​003 .CrossRef PubMed
    35.Yu Y, Wang Y, Tong Q, Liu X, Su F, Quan F, et al. A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle. PLoS One. 2013;8(5):e62457. doi:10.​1371/​journal.​pone.​0062457 .PubMedCentral CrossRef PubMed
    36.Yan S, Song H, Pang D, Zou Q, Li L, Yan Q, et al. Expression of plant sweet protein brazzein in the milk of transgenic mice. PLoS One. 2013;8(10):e76769. doi:10.​1371/​journal.​pone.​0076769 .PubMedCentral CrossRef PubMed
    37.Sun X, Wiedeman A, Agrawal N, Teal TH, Tanaka L, Hudkins KL, et al. Increased ribonuclease expression reduces inflammation and prolongs survival in TLR7 transgenic mice. J Immunol. 2013;190(6):2536–43. doi:10.​4049/​jimmunol.​1202689 .PubMedCentral CrossRef PubMed
    38.Moghaddassi S, Eyestone W, Bishop CE. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin. PLoS One. 2014;9(2):e89631. doi:10.​1371/​journal.​pone.​0089631 .PubMedCentral CrossRef PubMed
    39.Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol. 2011;12(9):861–9. doi:10.​1038/​ni.​2073 .CrossRef PubMed
    40.Cheng X, Yu X, Liu Y, Deng J, Ma X, Wang H. Functional analysis of bovine Nramp1 and production of transgenic cloned embryos in vitro. Zygote. 2015;23(1):83–92. doi:10.​1017/​S096719941300021​X .CrossRef PubMed
    41.Bai X, Shang S, Henao-Tamayo M, Basaraba RJ, Ovrutsky AR, Matsuda JL, et al. Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2015;112(16):5111–6. doi:10.​1073/​pnas.​1424302112 .PubMedCentral CrossRef PubMed
    42.Pan H, Mostoslavsky G, Eruslanov E, Kotton DN, Kramnik I. Dual-promoter lentiviral system allows inducible expression of noxious proteins in macrophages. J Immunol Methods. 2008;329(1–2):31–44. doi:10.​1016/​j.​jim.​2007.​09.​009 .PubMedCentral CrossRef PubMed
    43.Selcuk E, Kirimtay K, Canbaz D, Cesur GI, Korulu S, Karabay A. Katanin-p80 gene promoter characterization and regulation via Elk1. PLoS One. 2013;8(7):e69423. doi:10.​1371/​journal.​pone.​0069423 .PubMedCentral CrossRef PubMed
    44.Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol. 2014;12(4):289–99. doi:10.​1038/​nrmicro3230 .PubMedCentral CrossRef PubMed
    45.Carneiro AB, Iaciura BM, Nohara LL, Lopes CD, Veas EM, Mariano VS, et al. Lysophosphatidylcholine triggers TLR2- and TLR4-mediated signaling pathways but counteracts LPS-induced NO synthesis in peritoneal macrophages by inhibiting NF-kappaB translocation and MAPK/ERK phosphorylation. PLoS One. 2013;8(9):e76233. doi:10.​1371/​journal.​pone.​0076233 .PubMedCentral CrossRef PubMed
    46.O’Connell D, Bouazza B, Kokalari B, Amrani Y, Khatib A, Ganther JD, et al. IFN-gamma-induced JAK/STAT, but not NF-kappaB, signaling pathway is insensitive to glucocorticoid in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2015;309(4):L348–59. doi:10.​1152/​ajplung.​00099.​2015 .CrossRef PubMed
    47.Orme IM, Robinson RT, Cooper AM. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol. 2015;16(1):57–63. doi:10.​1038/​ni.​3048 .CrossRef PubMed
  • 作者单位:Yongyan Wu (1) (2)
    Fayang Liu (1) (2)
    Yan Zhang (1) (2)
    Yongsheng Wang (1) (2)
    Zekun Guo (1) (2)
    Yong Zhang (1) (2)

    1. College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
    2. Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
  • 刊物主题:Allergology; Immunology; Medicine/Public Health, general; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-0755
文摘
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which most commonly affects the lungs and causes over 1.3 million people die annually. Variation in host genes is known to influence susceptibility to tuberculosis. Expression of the intracellular pathogen resistance 1 (Ipr1) gene could enhance the host resistance to mycobacterium. Here, we analyzed the coding region sequence and promoter of Ipr1 gene of mouse strains C57BL/6 and BALB/c. We found that the coding sequences of Ipr1 gene both in C57BL/6 and in BALB/c mice encode the same protein, while the Ipr1 promoter of BALB/c exists a short deletion and showed a slight of decreased transcriptional activity when compared with C57BL/6. Moreover, the optimal and minimal Ipr1 promoter was identified by luciferase assays using truncated reporter constructs, and the region from −293 to +95 bp showed the highest transcriptional activity and responsible for IFN-γ stimulation. Furthermore, the results showed that IFN-γ activates JAK/STAT and NF-κB signaling pathways to induce Ipr1 expression, and the signal transducer and activator of transcription 1 (Stat1) are critical for IFN-γ-induced Ipr1 expression, because overexpression of Stat1 promotes Ipr1 transcription, but knockdown of Stat1 reduced Ipr1 expression. Collectively, for the first time, our study characterizes Ipr1 promoter and investigates the positive and negative regulation of Ipr1 expression, providing basic data for application of Ipr1 in animal breeding. Keywords Ipr1 Gene promoter Stat1 IFN-γ Mycobacterium

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700