Correlations and comparisons of quantitative trait loci with family per se and testcross performance for grain yield and related traits in maize
详细信息    查看全文
  • 作者:Bo Peng (1) (4)
    Yongxiang Li (1)
    Yang Wang (1)
    Cheng Liu (2)
    Zhizhai Liu (1) (3)
    Yan Zhang (1)
    Weiwei Tan (1)
    Di Wang (1)
    Yunsu Shi (1)
    Baocheng Sun (2)
    Yanchun Song (1)
    Tianyu Wang (1)
    Yu Li (1)
  • 刊名:Theoretical and Applied Genetics
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:126
  • 期:3
  • 页码:773-789
  • 全文大小:577KB
  • 参考文献:1. Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 5:187-95 CrossRef
    2. Ajmone-Marsan P, Monfredini G, Ludwig WF, Melchinger AE, Franceschini P, Pagnotto G, Motto M (1995) In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet 90:415-24
    3. Ajmone-Marsan P, Monfredini G, Brandolini A, Melchinger AE, Garay G, Motto M (1996) Identification of QTL for grain yield in an elite hybrid of maize: repeatability of map position and effects in independent samples derived from the same population. Maydica 41:49-7
    4. Ajmone-Marsan P, Gorni C, Chittò A, Redaelli R, van Vijk R, Stam P, Motto M (2001) Identification of QTLs for grain yield and grain-related traits of maize ( / Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet 102:230-43 CrossRef
    5. Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817-26 CrossRef
    6. Austin DF, Lee M (1998) Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38:1296-308 CrossRef
    7. Austin DF, Lee M, Veldboom LR, Hallauer AR (2000) Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture. Crop Sci 40:30-9 CrossRef
    8. Azanza F, Tadmor Y, Klein BP, Rocheford TR, Juvik JA (1996) Quantitative trait loci influencing chemical and sensory characteristics of eating quality in sweet corn. Genome 39:40-0 CrossRef
    9. Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding-prospects and challenges. Curr Sci India 87:607-19
    10. Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882-96 CrossRef
    11. Bekavac G, Purar B, Jockovi? D (2008) Relationships between line per se and testcross performance for agronomic traits in two broad-based populations of maize. Euphytica 162:363-69 CrossRef
    12. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20?years. Crop Sci 48:1649-664 CrossRef
    13. Bohn M, Groh S, Khairallah MM, Hoisington DA, Utz HF, Melchinger AE (2001) Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against / Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103:1059-067 CrossRef
    14. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714-18 CrossRef
    15. Cao G, Zhu J (2007) Conditional genetic analysis on quantitative trait loci for yield and its components in rice. Life Sci J 4:71-6
    16. Carlborg ?, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618-25 CrossRef
    17. Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53-7 CrossRef
    18. Ci X, Li M, Liang X, Xie Z, Zhang D, Li X, Lu Z, Ru G, Bai L, Xie C, Hao Z, Zhang S (2011) Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci 51:1- CrossRef
    19. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557-72 CrossRef
    20. Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289-01
    21. Doebley J, Bacigalupo A, Stec A (1994) Inheritance of kernel weight in two maize-teosinte hybrid populations: implications for crop evolution. J Hered 85:191-95
    22. Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASSA/CSSA/SSSA, Madison, pp 19-9
    23. Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Valè G (2005) Marker assisted selection in crop plants. Plant Cell Tiss Org 82:317-42 CrossRef
    24. Frascaroli E, Canè MA, Pè ME, Pea G, Morgante M, Landi P (2009) QTL detection in maize testcross progenies as affected by related and unrelated testers. Theor Appl Genet 118:993-004 CrossRef
    25. Genter CF, Alexander MW (1966) Development and selection of productive S1 inbred lines of corn ( / Zea mays L.). Crop Sci 6:429-31 CrossRef
    26. Guo LB, Xing YZ, Mei HW, Xu CG, Shi CH, Wu P, Luo LJ (2005) Dissection of component QTL expression in yield formation in rice. Plant Breed 124:127-32 CrossRef
    27. Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames
    28. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156-61 CrossRef
    29. Khairallah MM, Bohn M, Jiang C, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE, González-De-León D, Hoisington DA (1998) Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed 117:309-18 CrossRef
    30. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MapMaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-81 CrossRef
    31. Li Y, Wang Y, Shi Y, Song Y, Wand T, Li Y (2009) Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin 42:408-18
    32. Li Y, Ma X, Wang T, Li Y, Liu C, Liu Z, Sun B, Shi Y, Song Y, Carlone M, Bubeck D, Bhardwaj H, Whitaker D, Wilson W, Jones E, Wright K, Sun S, Niebur W, Smith S (2011) Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Sci 51:2391-400 CrossRef
    33. Liu GF, Yang J, Xu HM, Hayat Y, Zhu J (2008) Genetic analysis of grain yield conditioned on its component traits in rice. Aust J Agr Res 59:189-95 CrossRef
    34. Lübberstedt T, Melchinger AE, Sch?n CC, Utz HF, Klein D (1997) QTL mapping in testcrosses of European flint lines of maize: i. Comparison of different testers for forage yield traits. Crop Sci 37:921-31 CrossRef
    35. Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet 107:89-01
    36. Melchinger AE, Utz HF, Sch?n CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383-03
    37. Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: qTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913-30 CrossRef
    38. Mihaljevi? R (2005) Biometrical analyses of epistasis and the relationship between line per se and testcross performance of agronomic traits in elite populations of European maize ( / Zea mays L.). Dissertation, University of Hohenheim, Germany
    39. Mihaljevic R, Utz HF, Melchinger AE (2004) Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Sci 44:114-24 CrossRef
    40. Mihaljevic R, Sch?n CC, Utz HF, Melchinger AE (2005) Correlations and QTL correspondence between line per se and testcross performance for agronomic traits in four populations of European maize. Crop Sci 45:114-22 CrossRef
    41. Ordas B, Malvar RA, Santiago R, Sandoya G, Romay MC, Butron A (2009) Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73?×?Mo17 (IBM) population of maize. Theor Appl Genet 119:1451-459 CrossRef
    42. Papst C, Bohn M, Utz HF, Melchinger AE, Klein D, Eder J (2004) QTL mapping for European corn borer resistance ( / Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize ( / Zea mays L.) germplasm. Theor Appl Genet 108:1545-554 CrossRef
    43. Peng B, Wang Y, Li Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122:1305-320 CrossRef
    44. Ribaut JM, Ragot M (2007) Maker-assisted selection to improve drought adaption in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351-60 CrossRef
    45. Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887-96 CrossRef
    46. Rodríguez VM, Butrón A, Malvar RA, Ordás A, Revilla P (2008) Quantitative trait loci for cold tolerance in the maize IBM population. Int J Plant Sci 169:551-56 CrossRef
    47. Sch?n CC, Melchinger AE, Boppenmaier J, Brunklaus-Jung E, Herrmann RG, Seitzer JF (1994) RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34:378-89 CrossRef
    48. Sch?n CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485-98 CrossRef
    49. Sch?n CC, Dhillon BS, Utz HF, Melchinger AE (2010) High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet 120:321-32 CrossRef
    50. Smith OS (1986) Covariance between line per se and testcross performance. Crop Sci 26:540-43 CrossRef
    51. Utz HF (1997) PLABSTAT: A computer program for statistical analysis of plant breeding experiments. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart, Germany. Available at http://www.uni-hohenheim.de/~ipspwww/soft.html (version 3Bwin of Feb 2010)
    52. Utz HF, Melchinger AE (1996) PLABQTL: a computer program to map QTL. J Quant Trait Loci 2:1
    53. Utz HF, Melchinger AE, Sch?n CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839-849
    54. Veldboom LR, Lee M (1994) Molecular-marker-facilitated studies of morphological traits in maize. II: determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451-58 CrossRef
    55. Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117:1141-153 CrossRef
    56. Wang T, Ma X, Li Y, Bai D, Liu C, Liu Z, Tan X, Shi Y, Song Y, Carlone M, Bubeck D, Bhardwaj H, Jones E, Wright K, Smith S (2011) Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci 51:512-25 CrossRef
    57. You A, Lu X, Jin H, Ren X, Liu K, Yang G, Yang H, Zhu L, He G (2006) Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics 172:1287-300 CrossRef
    58. Zhang L, Dong S, Liu C, Wang K, Zhang J, Liu P (2007) Correlation analysis on maize test weight, yield and quality. Sci Agric Sin 40:405-11
  • 作者单位:Bo Peng (1) (4)
    Yongxiang Li (1)
    Yang Wang (1)
    Cheng Liu (2)
    Zhizhai Liu (1) (3)
    Yan Zhang (1)
    Weiwei Tan (1)
    Di Wang (1)
    Yunsu Shi (1)
    Baocheng Sun (2)
    Yanchun Song (1)
    Tianyu Wang (1)
    Yu Li (1)

    1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
    4. Tianjin Crops Research Institute, Tianjin, 300112, China
    2. Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China
    3. Southwest University, Chongqing, 400716, China
  • ISSN:1432-2242
文摘
Simultaneous improvement in grain yield and related traits in maize hybrids and their parents (inbred lines) requires a better knowledge of genotypic correlations between family per se performance (FP) and testcross performance (TP). Thus, to understand the genetic basis of yield-related traits in both inbred lines and their testcrosses, two F 2:3 populations (including 230 and 235 families, respectively) were evaluated for both FP and TP of eight yield-related traits in three diverse environments. Genotypic correlations between FP and TP, $ \hat{r}_{\text{g}} $ (FP, TP), were low (0-.16) for grain yield per plant (GYPP) and kernel number per plant (KNPP) in the two populations, but relatively higher (0.32-.69) for the other six traits with additive effects as the primary gene action. Similar results were demonstrated by the genotypic correlations between observed and predicted TP values based on quantitative trait loci positions and effects for FP, $ \hat{r}_{\text{g}} $ (M FP, Y TP). A total of 88 and 35 QTL were detected with FP and TP, respectively, across all eight traits in the two populations. However, the genotypic variances explained by the QTL detected in the cross-validation analysis were much lower than those in the whole data set for all traits. Several common QTL between FP and TP that accounted for large phenotypic variances were clustered in four genomic regions (bin 1.10, 4.05-.06, 9.02, and 10.04), which are promising candidate loci for further map-based cloning and improvement in grain yield in maize. Compared with publicly available QTL data, these QTL were also detected in a wide range of genetic backgrounds and environments in maize. These results imply that effective selection based on FP to improve TP could be achieved for traits with prevailing additive effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700