A new strategy for preparation of long-chain branched polypropylene via reactive extrusion with supercritical CO2 designed for an improved foaming approach
详细信息    查看全文
  • 作者:Kun Wang ; Shusheng Wang ; Fei Wu ; Yongyan Pang ; Wei Liu…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:5
  • 页码:2705-2715
  • 全文大小:1,615 KB
  • 参考文献:1.Colton JS (1989) The nucleation of microcellular foams in semi crystalline thermoplastics. Mater Manuf Process 4:253–262CrossRef
    2.Song N, Zhu L, Yan XL et al (2008) Effect of blend composition on the rheology property of polypropylene/poly (ethylene-1-octene) blends. J Mater Sci 43:3218–3222. doi:10.​1007/​s10853-008-2554-9 CrossRef
    3.Ding J, Ma WH, Song FJ, Zhong Q (2013) Effect of nano-calcium carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511. doi:10.​1007/​s10853-012-7039-1 CrossRef
    4.Park CB, Cheung LK (1998) A study of cell nucleation in the extrusion of polypropylene foams. Polym Eng Sci 37:1–10CrossRef
    5.Arroyo CS, Saja JAD, Velasco JI et al (2012) Moulded polypropylene foams produced using chemical or physical blowing agents: structure–properties relationship. J Mater Sci 47:5680–5692. doi:10.​1007/​s10853-012-6357-7 CrossRef
    6.Lu B, Chung TC (1999) Synthesis of long chain branched polypropylene with relatively well-defined molecular structure. Macromolecules 32:8678–8680CrossRef
    7.Langston JA, Colby RH, Chung TCM et al (2007) Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent. Macromolecules 40:2712–2720CrossRef
    8.Langston JA, Colby RH, Shimizu F et al (2007) One-pot synthesis of long chain branch PP (LCBPP) using Ziegler-Natta catalyst and branching reagents. Macromol Symp 260:34–41CrossRef
    9.Weng WQ, Hu WG, Dekmezian AH, Ruff CJ (2002) Long chain branched isotactic polypropylene. Macromolecules 35:3838–3843CrossRef
    10.Auhl D, Stange J, Münstedt H et al (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472CrossRef
    11.Yoshii F, Makuuchi K, Kikukawa S et al (1996) High-melt-strength polypropylene with electron beam irradiation in the presence of polyfunctional monomers. J Appl Polym Sci 60:617–623CrossRef
    12.Wong B, Baker WE (1997) Melt rheology of graft modified polypropylene. Polymer 38:2781–2789CrossRef
    13.Krause B, Stephan M, Volkland S et al (2006) Long-chain branching of polypropylene by electron-beam irradiation in the molten state. J Appl Polym Sci 99:260–265CrossRef
    14.Graebling D (2002) Synthesis of branched polypropylene by a reactive extrusion process. Macromolecules 35:4602–4610CrossRef
    15.Lagendijk RP, Hogt AH, Buijtenhuijs A, Gotsis AD (2001) Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer 42:10035–10043CrossRef
    16.Su FH, Huang HX (2011) Supercritical carbon dioxide-assisted reactive extrusion for preparation long-chain branching polypropylene and its rheology. J Supercrit Fluid 56:114–120CrossRef
    17.Wang D, Xie XM, Jow JD et al (2008) Styrene-assisted melt free-radical grafting of pentaerythritol triacrylate onto polypropylene and its crystallization behavior. J Appl Polym Sci 108:1737–1743CrossRef
    18.Santos ASF, Agnelli JAM, Trevisan DW, Manrich S (2002) Degradation and stabilization of polyolefins from municipal plastic waste during multiple extrusions under different reprocessing conditions. Polym Degrad Stab 77:441–447CrossRef
    19.Mantia FPL, Gardette JL (2002) Improvement of the mechanical properties of photo-oxidized films after recycling. Polym Degrad Stab 75:1–7CrossRef
    20.Shi D, Hu GH, Li RKY (2006) Concept of nano-reactor for the control of the selectivity of the free radical grafting of maleic anhydride onto polypropylene in the melt. Chem Eng Sci 61:3780–3784CrossRef
    21.Shi D, Li RKY (2006) Nano-reactors for controlling the selectivity of the free radical grafting of maleic anhydride onto polypropylene in the melt. Polym Eng Sci 46:1443–1454CrossRef
    22.Cartier H, Hu GH (1998) Styrene-assisted melt free radical grafting of glycidyl methacrylate onto polypropylene. J Polym Sci Part A 36:1053–1063CrossRef
    23.Li D, Han BX, Liu ZM (2001) Grafting of 2-hydroxyethyl methacrylate onto isotactic poly(propylene) using supercritical CO2 as a solvent and swelling agent. Macromol Chem Phys 202:2187–2194CrossRef
    24.Liu T, Hu GH, Tong GS et al (2005) Supercritical carbon dioxide assisted solid-state grafting process of maleic anhydride onto polypropylene. Ind Eng Chem Res 44:4292–4299CrossRef
    25.Spadaro G, Gregorio RD, Galia A et al (2000) Gamma radiation induced maleation of polypropylene using supercritical CO2: preliminary results. Polymer 41:3491–3494CrossRef
    26.Tong GS, Liu T, Hu GH et al (2007) Supercritical carbon dioxide-assisted solid-state free radical grafting of methyl methacrylate onto polypropylene. J Supercrit Fluid 43:64–73CrossRef
    27.Dorscht BM, Tzoganakis C (2003) Reactive extrusion of polypropylene with supercritical carbon dioxide: free radical grafting of maleic anhydride. J Appl Polym Sci 87:1116–1122CrossRef
    28.Cao K, Shen ZC, Yao Z et al (2010) New insight into the action of supercritical carbon dioxide for grafting of maleic anhydride onto isotactic polypropylene by reactive extrusion. Chem Eng Sci 65:1621–1626CrossRef
    29.Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43CrossRef
    30.Wang K, Wu F, Zhai WT, Zheng WG (2013) Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion. J Appl Polym Sci 129:2253–2260CrossRef
    31.Liu JY, Lou LJ, Yu W et al (2010) Long chain branching polylactide: structures and properties. Polymer 51:5186–5197CrossRef
    32.Wang XC, Tzoganakis C, Rempel GL (1996) Chemical modification of polypropylene with peroxide/pentaerythritol triacrylate by reactive extrusion. J Appl Polym Sci 61:1395–1404CrossRef
    33.Tian JH, Yu W, Zhou CX (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969CrossRef
    34.Dong ZX, Liu ZM, Han BX et al (2004) Modification of isotactic polypropylene films by grafting methyl acrylate using supercritical CO2 as a swelling agent. J Supercrit Fluid 31:67–74CrossRef
    35.Adams PMW, Dealy JM, Groot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7489–7499CrossRef
    36.Malmberg A, Gabriel C, Steffl T et al (2002) Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry. Macromolecules 35:1038–1048CrossRef
    37.Gotsis AD, Zeevenhoven BLF, Hogt AH (2004) The effect of long chain branching on the processability of polypropylene in thermoforming. Polym Eng Sci 44:973–982CrossRef
    38.Li SZ, Xiao MM, Wei DF et al (2009) The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 50:6121–6128CrossRef
  • 作者单位:Kun Wang (1)
    Shusheng Wang (1)
    Fei Wu (1)
    Yongyan Pang (1)
    Wei Liu (1)
    Wentao Zhai (1)
    Wenge Zheng (1)

    1. Ningbo Key Laboratory of Polymer Materials, Polymers and Composites Division, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, Zhejiang, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
A novel strategy was designed for the preparation of a long-chain branched polypropylene (PP) with improved foamability via reactive extrusion in the presence of supercritical CO2 (scCO2). Benzoyl peroxide was used as a radical initiator and trimethylolpropane triacrylate (TMPTA) was applied as a polyfunctional reactive monomer during extrusion. Fourier transform infrared spectroscopy and high temperature GPC confirmed that TMPTA was grafted onto PP chains, and the presence of scCO2 promoted the grafting and branching reactions, and hindered polymer degradation. A possible mechanism was proposed to explain the effect of scCO2 on the branching reactions. In addition, rheological behavior of pure PP and modified PP samples was studied to investigate the effect of long chain branching of PP on the melt viscosity and strength, and foaming behavior was studied to confirm the subsequent effect on its foamability. It was found that the long chain branching increased the melt viscosity and strength of modified PP samples, which favored the foamability, and that the foaming windows were expanded in the presence of scCO2. Thus, it provided an advanced foaming approach via preparation of long-chain branched PP through reactive extrusion with scCO2 both working as the reactive medium and the foaming agent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700