Time-dependent network analysis reveals molecular targets underlying the development of diet-induced obesity and non-alcoholic steatohepatitis
详细信息    查看全文
  • 作者:Hea-Young Oh (1)
    Su-kyung Shin (2)
    Hyoung-Sam Heo (1)
    Ji-Sook Ahn (1) (6)
    Eun-Young Kwon (2)
    Jung Han Yoon Park (3)
    Yun-young Cho (2)
    Hae-Jin Park (2)
    Mi-Kyung Lee (4)
    Eun Jung Kim (5)
    Un-Ju Jung (2)
    Robin A. McGregor (2)
    Cheol-Goo Hur (1)
    Myung-Sook Choi (2)
  • 关键词:Transcription ; Cirrhosis ; Hepatic steatosis ; Microarray ; Network ; Obesity
  • 刊名:Genes & Nutrition
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:8
  • 期:3
  • 页码:301-316
  • 全文大小:3850KB
  • 参考文献:1. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613-616 CrossRef
    2. Akira S (2003) Mammalian toll-like receptors. Curr Opin Immunol 15:5-1 CrossRef
    3. Baranova A, Schlauch K, Elariny H, Jarrar M, Bennett C, Nugent C, Gowder SJ, Younoszai Z, Collantes R, Chandhoke V, Younossi ZM (2007) Gene expression patterns in hepatic tissue and visceral adipose tissue of patients with non-alcoholic fatty liver disease. Obes Surg 17:1111-118 CrossRef
    4. Bertola A, Bonnafous S, Anty R, Patouraux S, Saint-Paul M-C, Iannelli A, Gugenheim J, Barr J, Mato JM, Le Marchand-Brustel Y, Tran A, Gual P (2010) Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS ONE 5:e13577 CrossRef
    5. Boitier E, Gautier J-C, Roberts R (2003) Advances in understanding the regulation of apoptosis and mitosis by peroxisome-proliferator activated receptors in pre-clinical models: relevance for human health and disease. Comp Hepatol 2:3 CrossRef
    6. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032-037 CrossRef
    7. Caricilli AM, Nascimento PH, Pauli JR, Tsukumo DML, Velloso LA, Carvalheira JB, Saad MJA (2008) Inhibition of toll-like receptor 2 expression improves insulin sensitivity and signaling in muscle and white adipose tissue of mice fed a high-fat diet. J Endocrinol 199:399-06 CrossRef
    8. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48-2 CrossRef
    9. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519-523 CrossRef
    10. Do G-M, Oh HY, Kwon E-Y, Cho Y–Y, Shin S-K, Park H-J, Jeon S-M, Kim E, Hur C-G, Park T-S, Sung M-K, McGregor RA, Choi M-S (2011) Long-term adaptation of global transcription and metabolism in the liver of high-fat diet-fed C57BL/6?J mice. Mol Nutr Food Res 55:173-85 CrossRef
    11. Fayard E, Auwerx J, Schoonjans K (2004) LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 14:250-60 CrossRef
    12. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377:557-67 CrossRef
    13. Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA (2010) A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 46:212-23 CrossRef
    14. Gao J, Ade AS, Tarcea VG, Weymouth TE, Mirel BR, Jagadish HV, States DJ (2009) Integrating and annotating the interactome using the MiMI plugin for cytoscape. Bioinformatics 25:137-38 CrossRef
    15. Gawrieh S, Baye TM, Carless M, Wallace J, Komorowski R, Kleiner DE, Andris D, Makladi B, Cole R, Charlton M, Curran J, Dyer TD, Charlesworth J, Wilke R, Blangero J, Kissebah AH, Olivier M (2010) Hepatic gene networks in morbidly obese patients with nonalcoholic fatty liver disease. Obes Surg 20:1698-709 CrossRef
    16. Gregoire FM, Zhang Q, Smith SJ, Tong C, Ross D, Lopez H, West DB (2002) Diet-induced obesity and hepatic gene expression alterations in C57BL/6?J and ICAM-1-deficient mice. Am J Physiol Endocrinol Metab 282:E703–E713
    17. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88 CrossRef
    18. Guillén N, Navarro MA, Arnal C, Noone E, Arbonés-Mainar JM, Acín S, Surra JC, Muniesa P, Roche HM, Osada J (2009) Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver. Physiol Genomics 37:187-98 mics.90339.2008">CrossRef
    19. Hamilton JA (1997) CSF-1 signal transduction. J Leukoc Biol 62:145-55
    20. Haralanova-Ilieva B, Ramadori G, Armbrust T (2005) Expression of osteoactivin in rat and human liver and isolated rat liver cells. J Hepatol 42:565-72 CrossRef
    21. Hashimoto T, Fujita T, Usuda N, Cook W, Qi C, Peters JM, Gonzalez FJ, Yeldandi AV, Rao MS, Reddy JK (1999) Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 274:19228-9236 CrossRef
    22. Hebbard L, George J (2011) Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 8:35-4 CrossRef
    23. Hemi R, Paz K, Wertheim N, Karasik A, Zick Y, Kanety H (2002) Transactivation of ErbB2 and ErbB3 by tumor necrosis factor-alpha and anisomycin leads to impaired insulin signaling through serine/threonine phosphorylation of IRS proteins. J Biol Chem 277:8961-969 CrossRef
    24. Himes RW, Smith CW (2010) Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J 24:731-39 CrossRef
    25. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644-52 CrossRef
    26. Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ (2009) Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 119:305-14
    27. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416 CrossRef
    28. Jinno Y, Nakakuki M, Sato A, Kawano H, Notsu T, Mizuguchi K, Shimano H (2010) Cide-a and Cide-c are induced in the progression of hepatic steatosis and inhibited by eicosapentaenoic acid. Prostaglandins Leukot Essent Fatty Acids 83:75-1 CrossRef
    29. Kato H, Nomura K, Osabe D, Shinohara S, Mizumori O, Katashima R, Iwasaki S, Nishimura K, Yoshino M, Kobori M, Ichiishi E, Nakamura N, Yoshikawa T, Tanahashi T, Keshavarz P, Kunika K, Moritani M, Kudo E, Tsugawa K, Takata Y, Hamada D, Yasui N, Miyamoto T, Shiota H, Inoue H, Itakura M (2006) Association of single-nucleotide polymorphisms in the suppressor of cytokine signaling 2 (SOCS2) gene with type 2 diabetes in the Japanese. Genomics 87:446-58 CrossRef
    30. Kim S, Sohn I, Ahn J-I, Lee K-H, Lee YS, Lee YS (2004) Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340:99-09 CrossRef
    31. Kleemann R, van Erk M, Verschuren L, van den Hoek AM, Koek M, Wielinga PY, Jie A, Pellis L, Bobeldijk-Pastorova I, Kelder T, Toet K, Wopereis S, Cnubben N, Evelo C, van Ommen B, Kooistra T (2010) Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS ONE 5:e8817 CrossRef
    32. Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Sasso GL, Moschetta A, Schibler U (2009) REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 7:e1000181 CrossRef
    33. Li JZ, Ye J, Xue B, Qi J, Zhang J, Zhou Z, Li Q, Wen Z, Li P (2007) Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56:2523-532 CrossRef
    34. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365-72 CrossRef
    35. Lydatakis H, Hager IP, Kostadelou E, Mpousmpoulas S, Pappas S, Diamantis I (2006) Non-invasive markers to predict the liver fibrosis in non-alcoholic fatty liver disease. Liver Int 26:864-71 CrossRef
    36. Matsuda Y, Yamagiwa Y, Fukushima K, Ueno Y, Shimosegawa T (2008) Expression of galectin-3 involved in prognosis of patients with hepatocellular carcinoma. Hepatol Res 38:1098-111 CrossRef
    37. Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y, Miyamoto K-I, Kaneko S (2007) Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46:1392-403 CrossRef
    38. Merlin J, Stechly L, de Beaucé S, Monté D, Leteurtre E, van Seuningen I, Huet G, Pigny P (2011) Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells. Oncogene 30:2514-525 CrossRef
    39. Norwood VF, Morham SG, Smithies O (2000) Postnatal development and progression of renal dysplasia in cyclooxygenase-2 null mice. Kidney Int 58:2291-300 CrossRef
    40. Ogasawara M, Hirose A, Ono M, Aritake K, Nozaki Y, Takahashi M, Okamoto N, Sakamoto S, Iwasaki S, Asanuma T, Taniguchi T, Urade Y, Onishi S, Saibara T, Oben JA (2011) A novel and comprehensive mouse model of human non-alcoholic steatohepatitis with the full range of dysmetabolic and histological abnormalities induced by gold thioglucose and a high-fat diet. Liver Int 31:542-51 CrossRef
    41. Radonjic M, de Haan JR, van Erk MJ, van Dijk KW, van den Berg SAA, de Groot PJ, Müller M, van Ommen B (2009) Genome-wide mRNA expression analysis of hepatic adaptation to high-fat diets reveals switch from an inflammatory to steatotic transcriptional program. PLoS ONE 4:e6646 CrossRef
    42. Roncon-Albuquerque R Jr, Moreira-Rodrigues M, Faria B, Ferreira AP, Cerqueira C, Louren?o AP, Pestana M, von Hafe P, Leite-Moreira AF (2008) Attenuation of the cardiovascular and metabolic complications of obesity in CD14 knockout mice. Life Sci 83:502-10 CrossRef
    43. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13:1324-332 CrossRef
    44. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498-504 CrossRef
    45. Shechter I, Dai P, Huo L, Guan G (2003) IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: evidence that IDH1 may regulate lipogenesis in hepatic cells. J Lipid Res 44:2169-180 CrossRef
    46. Sheng MH-C, Wergedal JE, Mohan S, Lau K-HW (2008) Osteoactivin is a novel osteoclastic protein and plays a key role in osteoclast differentiation and activity. FEBS Lett 582:1451-458 CrossRef
    47. Smyth GK (2005) Bioinformatics an computational biology solutions using R an bioconductor. Springer, New York, pp 397-20 CrossRef
    48. Starska K, Brys M, Forma E, Glowacka E, Lewy-Trenda I, Stasikowska O, Krajewska WM, Lukomski M (2009) Impact of EGFR immunoexpression on STAT3 activation and association with proinflammatory/regulatory cytokine pattern in laryngeal squamous cell carcinoma. Oncol Rep 21:539-48
    49. Strazzullo P, D’Elia L, Cairella G, Garbagnati F, Cappuccio FP, Scalfi L (2010) Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Stroke 41:e418–e426 CrossRef
    50. Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91:1309-313 CrossRef
    51. Virbasius JV, Virbasius CA, Scarpulla RC (1993) Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev 7:380-92 CrossRef
    52. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M (2011) Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378:815-25 CrossRef
    53. Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, Gaedigk A, Suver C, Zhong H, Leeder JS, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich RG, Slatter JG, Schadt EE, Kasarskis A, Lum PY (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res 20:1020-036 CrossRef
    54. Zhang YJ, Jiang W, Chen CJ, Lee CS, Kahn SM, Santella RM, Weinstein IB (1993) Amplification and overexpression of cyclin D1 in human hepatocellular carcinoma. Biochem Biophys Res Commun 196:1010-016 CrossRef
    55. Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin S-C, Hong W, Li P (2003) Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 35:49-6 CrossRef
  • 作者单位:Hea-Young Oh (1)
    Su-kyung Shin (2)
    Hyoung-Sam Heo (1)
    Ji-Sook Ahn (1) (6)
    Eun-Young Kwon (2)
    Jung Han Yoon Park (3)
    Yun-young Cho (2)
    Hae-Jin Park (2)
    Mi-Kyung Lee (4)
    Eun Jung Kim (5)
    Un-Ju Jung (2)
    Robin A. McGregor (2)
    Cheol-Goo Hur (1)
    Myung-Sook Choi (2)

    1. Division of Biosystems Research, Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Republic of Korea
    2. Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 Sank-Yuk Dong Puk-Ku, Daegu, 702-701, Republic of Korea
    6. Department of Bioinformatics, University of Science and Technology (UST), Daejeon, Republic of Korea
    3. Department of Food Science and Nutrition, College of Natural Sciences, Hallym University, Chuncheon, 200-702, Republic of Korea
    4. Department of Food Science and Nutrition, Sunchon National University, Sunchon, Republic of Korea
    5. Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea
  • ISSN:1865-3499
文摘
Prolonged high-fat diet leads to the development of obesity and multiple comorbidities including non-alcoholic steatohepatitis (NASH), but the underlying molecular basis is not fully understood. We combine molecular networks and time course gene expression profiles to reveal the dynamic changes in molecular networks underlying diet-induced obesity and NASH. We also identify hub genes associated with the development of NASH. Core diet-induced obesity networks were constructed using Ingenuity pathway analysis (IPA) based on 332 high-fat diet responsive genes identified in liver by time course microarray analysis (8 time points over 24?weeks) of high-fat diet-fed mice compared to normal diet-fed mice. IPA identified five core diet-induced obesity networks with time-dependent gene expression changes in liver. These networks were associated with cell-to-cell signaling and interaction (Network 1), lipid metabolism (Network 2), hepatic system disease (Network 3 and 5), and inflammatory response (Network 4). When we merged these core diet-induced obesity networks, Tlr2, Cd14, and Ccnd1 emerged as hub genes associated with both liver steatosis and inflammation and were altered in a time-dependent manner. Further, protein–protein interaction network analysis revealed Tlr2, Cd14, and Ccnd1 were interrelated through the ErbB/insulin signaling pathway. Dynamic changes occur in molecular networks underlying diet-induced obesity. Tlr2, Cd14, and Ccnd1 appear to be hub genes integrating molecular interactions associated with the development of NASH. Therapeutics targeting hub genes and core diet-induced obesity networks may help ameliorate diet-induced obesity and NASH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700