Transcriptomic profiles reveal the genome-wide responses of the harmful dinoflagellate Cochlodinium polykrikoides when exposed to the algicide copper sulfate
详细信息    查看全文
  • 作者:Ruoyu Guo ; Hui Wang ; Young Sang Suh ; Jang-Seu Ki
  • 关键词:Cochlodinium polykrikoides ; Algicide CuSO4 ; Trancriptomic response ; Differentially expressed genes
  • 刊名:BMC Genomics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:3,633 KB
  • 参考文献:1.Taylor FJR, Hoppenrath M, Saldarriaga J. Dinoflagellate diversity and distribution. Biodivers Conserv. 2008;17(2):407–18.CrossRef
    2.Anderson DM, Cembella AD, Hallegraeff GM. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci. 2012;4:143–76.PubMed CrossRef
    3.Glibert PM, Icarus Allen J, Artioli Y, Beusen A, Bouwman L, Harle J, et al. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob Chang Biol. 2014;20(12):3845–58.PubMed CrossRef
    4.Miao C, Tang Y, Zhang H, Wu Z, Wang X. Harmful algae blooms removal from fresh water with modified vermiculite. Environmental Technolog. 2014;35(1–4):340–6.CrossRef
    5.Smayda TJ. What is a bloom? A commentary. Limnol Oceanogr. 1997;42(5part2):1132–6.CrossRef
    6.Harvey EL, Menden-Deuer S. Predator-induced fleeing behaviors in phytoplankton: a new mechanism for harmful algal bloom formation? PLoS ONE. 2012;7(9):e46438.PubMed PubMedCentral CrossRef
    7.Kim HG. Mitigation and controls of HABs. In: Graneli E, Turner J, editors. Ecology of harmful algae, vol. 189. Springer Verlag, Berlin, Heidelberg; 2006. p. 327–38.
    8.Secher S. Measures to control harmful algal blooms. The Plymouth Student Scientist. 2009;2(1):212–27.
    9.Qian H, Yu S, Sun Z, Xie X, Liu W, Fu Z. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquat Toxicol. 2010;99(3):405–12.PubMed CrossRef
    10.Ebenezer V, Lim WA, Ki J-S. Effects of the algicides CuSO4 and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides. J Appl Phycol. 2014;26(6):2357–65.CrossRef
    11.Gouvêa SP, Boyer GL, Twiss MR. Influence of ultraviolet radiation, copper, and zinc on microcystin content in Microcystis aeruginosa (Cyanobacteria). Harmful Algae. 2008;7(2):194–205.CrossRef
    12.Jeong HJ, Kim HR, Kim KI, Kim KY, Park KH, Kim ST, et al. NaOCl produced by electrolysis of natural seawater as a potential method to control marine red-tide dinoflagellates. Phycologia. 2002;41(6):643–56.CrossRef
    13.Hackett JD, Bhattacharya D. The genomes of dinoflagellates. In: Katz LA, Bhattacharya D, editors. Genomics and evolution of microbial eukaryotes. New York: Oxford University Press; 2006. p. 48–63.
    14.Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. Dinoflagellates: a remarkable evolutionary experiment. Am J Bot. 2004;91(10):1523–34.PubMed CrossRef
    15.Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, et al. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci. 2007;104(11):4618–23.PubMed PubMedCentral CrossRef
    16.Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol. 2013;23(15):1399–408.PubMed CrossRef
    17.Brunelle SA, Van Dolah FM. Post-transcriptional regulation of s-phase genes in the dinoflagellate, Karenia brevis. J Eukaryot Microbiol. 2011;58(4):373–82.PubMed CrossRef
    18.Okamoto OK, Hastings J. Novel dinoflagellate clock-related genes identifed through microarray analysis. J Phycol. 2003;39(3):519–26.CrossRef
    19.Erdner DL, Anderson DM. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using massively parallel signature sequencing. BMC Genomics. 2006;7(1):88.PubMed PubMedCentral CrossRef
    20.Moustafa A, Evans AN, Kulis DM, Hackett JD, Erdner DL, Anderson DM, et al. Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence. PLoS ONE. 2010;5(3), e9688.PubMed PubMedCentral CrossRef
    21.Yang I, Beszteri S, Tillmann U, Cembella A, John U. Growth-and nutrient-dependent gene expression in the toxigenic marine dinoflagellate Alexandrium minutum. Harmful Algae. 2011;12:55–69.CrossRef
    22.Johnson JG, Morey JS, Neely MG, Ryan JC, Van Dolah FM. Transcriptome remodeling associated with chronological aging in the dinoflagellate, Karenia brevis. Mar Genomics. 2012;5:15–25.PubMed CrossRef
    23.Zhang S, Sui Z, Chang L, Kang K, Ma J, Kong F, et al. Transcriptome de novo assembly sequencing and analysis of the toxic dinoflagellate Alexandrium catenella using the Illumina Platform. Gene. 2014;537(2):285–93.PubMed CrossRef
    24.Morey JS, Monroe EA, Kinney AL, Beal M, Johnson JG, Hitchcock GL, et al. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics. 2011;12(1):346.PubMed PubMedCentral CrossRef
    25.Kudela RM, Gobler CJ. Harmful dinoflagellate blooms caused by Cochlodinium sp.: Global expansion and ecological strategies facilitating bloom formation. Harmful Algae. 2012;14:71–86.CrossRef
    26.Kim CS, Lee SG, Lee CK, Kim HG, Jung J. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J Plankton Res. 1999;21(11):2105–15.CrossRef
    27.Gárate-Lizárraga I, López-Cortes DJ, Bustillos-Guzman JJ, Hernández-Sandoval F. Blooms of Cochlodinium polykrikoides (Gymnodiniaceae) in the gulf of California, Mexico. Rev Biol Trop. 2004;52 Suppl 1:51–8.PubMed
    28.Ebenezer V, Ki J-S. Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides. Algae. 2012;27(1):63–70.CrossRef
    29.Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.PubMed PubMedCentral CrossRef
    30.Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36 suppl 1:D480–4.PubMed PubMedCentral
    31.Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.PubMed CrossRef
    32.Kriedemann P, Graham R, Wiskich J. Photosynthetic dysfunction and in vivo changes in chlorophyll a fluorescence from manganese-deficient wheat leaves. Aust J Agr Res. 1985;36(2):157–69.CrossRef
    33.Kalaji HM, Bosa K, Kościelniak J, Żuk-Gołaszewska K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot. 2011;73:64–72.CrossRef
    34.Ebenezer V, Ki J-S. Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides. Algae. 2014;29(4):311–9.CrossRef
    35.Guo R, Ki J-S. Evaluation and validation of internal control genes for studying gene expression in the dinoflagellate Prorocentrum minimum using real-time PCR. Eur J Protistol. 2011;48(3):199–206.PubMed CrossRef
    36.Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45–5.
    37.Zhang Y, Zhang S-F, Lin L, Wang D-Z. Comparative transcriptome analysis of a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant. Mar Drugs. 2014;12(11):5698–718.PubMed PubMedCentral CrossRef
    38.Meyer JM, Rödelsperger C, Eichholz K, Tillmann U, Cembella A, McGaughran A, et al. Transcriptomic characterisation and genomic glimps into the toxigenic dinoflagellate Azadinium spinosum, with emphasis on polykeitde synthase genes. BMC Genomics. 2015;16(1):27.PubMed PubMedCentral CrossRef
    39.De Coninck DI, Janssen CR, De Schamphelaere KA. An investigation of the inter-clonal variation of the interactive effects of cadmium and Microcystis aeruginosa on the reproductive performance of Daphnia magna. Aquat Toxicol. 2013;140:425–31.PubMed CrossRef
    40.World Health Organization. Guidelines for drinking-water quality: recommendations, vol. 1. Geneva; WHO, 2004.
    41.Baumgarten S, Bayer T, Aranda M, Liew YJ, Carr A, Micklem G, Voolstra CR. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics. 2013;14:704.
    42.Ponmani T, Guo R, Ki J-S. Analysis of the genomic DNA of the harmful dinoflagellate Prorocentrum minimum: a brief survey focused on the non-coding RNA gene sequences. J Applied Phycology. 2015: doi:10.​1007/​s10811-10015-10570-10810 .
    43.Lee D-H, Mittag M, Sczekan S, Morse D, Hastings J. Molecular cloning and genomic organization of a gene for luciferin-binding protein from the dinoflagellate Gonyaulax polyedra. J Biol Chem. 1993;268(12):8842–50.PubMed
    44.Li L, Hastings JW. The structure and organization of the luciferase gene in the photosynthetic dinoflagellate Gonyaulax polyedra. Plant Mol Biol. 1998;36(2):275–84.PubMed CrossRef
    45.Okamoto OK, Robertson DL, Fagan TF, Hastings JW, Colepicolo P. Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase. J Biol Chem. 2001;276(23):19989–93.PubMed CrossRef
    46.Morse D, Milos PM, Roux E, Hastings JW. Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc Natl Acad Sci. 1989;86(1):172–6.PubMed PubMedCentral CrossRef
    47.Weake VM, Workman JL. Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet. 2010;11(6):426–37.PubMed CrossRef
    48.Sormani R, Masclaux-Daubresse C, Daniele-Vedele F, Chardon F. Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in Arabidopsis thaliana. PLoS ONE. 2011;6(12), e28070.PubMed PubMedCentral CrossRef
    49.Liu X-D, Xie L, Wei Y, Zhou X, Jia B, Liu J, et al. Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Appl Environ Microbiol. 2014;80(14):4294–300.PubMed PubMedCentral CrossRef
    50.Contreras-Porcia L, Dennett G, González A, Vergara E, Medina C, Correa JA, et al. Identification of copper-induced genes in the marine alga Ulva compressa (Chlorophyta). Marine Biotechnol. 2011;13(3):544–56.CrossRef
    51.MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet. 2011;27(4):141–8.PubMed PubMedCentral CrossRef
    52.Hahn S, Young ET. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics. 2011;189(3):705–36.PubMed PubMedCentral CrossRef
    53.Hook SE, Osborn HL, Gissi F, Moncuquet P, Twine NA, Wilkins MR, et al. RNA-Seq analysis of the toxicant-induced transcriptome of the marine diatom, Ceratoneis closterium. Mar Genomics. 2014;16:45–53.PubMed CrossRef
    54.Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H. Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot. 2008;59(12):3465–74.PubMed PubMedCentral CrossRef
    55.Xiong B, Zhang W, Chen L, Lin K-F, Guo M-J, Wang W-L, et al. Effects of Pb (II) exposure on Chlorella protothecoides and Chlorella vulgaris growth, malondialdehyde, and photosynthesis-related gene transcription. Environ Toxicol. 2014;29(11):1346–54.PubMed
    56.Xu J, Lan H, Fang H, Huang X, Zhang H, Huang J. Quantitative Proteomic Analysis of the Rice (Oryza sativa L.) Salt Response. PLoS ONE. 2015;10(3):e0120978.PubMed PubMedCentral CrossRef
    57.Zhu J, Patzoldt WL, Radwan O, Tranel PJ, Clough SJ. Effects of photosystem-II-interfering herbicides atrazine and bentazon on the soybean transcriptome. The Plant Genome. 2009;2(2):191–205.CrossRef
    58.Wu S, Zhang H, Yu X, Qiu L. Toxicological responses of Chlorella vulgaris to dichloromethane and dichloroethane. Environ Eng Sci. 2014;31(1):9–17.PubMed PubMedCentral CrossRef
    59.Gonzalez-Mendoza D, Escoboza-Garcia F, Santamria JM, Zapata-Perez O. Copper stress on photosynthesis of black mangle (Avicennia germinans). An Acad Bras Cienc. 2013;85(2):665–70.PubMed CrossRef
    60.Küpper H, Šetlík I, Spiller M, Küpper FC, Prášil O. Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol. 2002;38(3):429–41.CrossRef
    61.Blot N, Mella-Flores D, Six C, Le Corguillé G, Boutte C, Peyrat A, et al. Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. Plant Physiol. 2011;156(4):1934–54.PubMed PubMedCentral CrossRef
    62.Braun HP, Binder S, Brennicke A, Eubel H, Fernie AR, Finkemeier I, et al. The life of plant mitochondrial complex I. Mitochondrion. 2014;2014(19):295–313.CrossRef
    63.Jacoby RP, Li L, Huang S, Pong Lee C, Millar AH, Taylor NL. Mitochondrial Composition, Function and Stress Response in Plants. J Integr Plant Biol. 2012;54(11):887–906.PubMed
    64.Garcia L, Welchen E, Gonzalez DH. Mitochondria and copper homeostasis in plants. Mitochondrion. 2014;19:269–74.PubMed CrossRef
    65.Guo R, Ebenezer V, Ki J-S. PmMGST3, a novel microsomal glutathione S-transferase gene in the dinoflagellate Prorocentrum minimum, is a potential biomarker of oxidative stress. Gene. 2014;546(2):378–85.PubMed CrossRef
    66.Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141(2):391–6.PubMed PubMedCentral CrossRef
    67.Ponmani T, Guo R, Suh YS, Ki J-S. Molecular characterisation and expression analysis of a novel calreticulin (CRT) gene in the dinoflagellate Prorocentrum minimum. Mol Biol Rep. 2015;42(3):681–8.PubMed CrossRef
    68.Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013.
    69.Patwari P, Lee RT. Thioredoxins, mitochondria, and hypertension. Am J Pathol. 2007;170(3):805–8.PubMed PubMedCentral CrossRef
    70.Ahsan MK, Lekli I, Ray D, Yodoi J, Das DK. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal. 2009;11(11):2741–58.PubMed PubMedCentral CrossRef
    71.Poole LB, Hall A, Nelson KJ. Overview of peroxiredoxins in oxidant defense and redox regulation. Current Protocols in Toxicology 2011:Unit7.9.
    72.Herve C, de Franco P, Groisillier A, Tonon T, Boyen C. New members of the glutathione transferase family discovered in red and brown algae. Biochem J. 2008;412:535–44.PubMed CrossRef
    73.de Franco P-O, Rousvoal S, Tonon T, Boyen C. Whole genome survey of the glutathione transferase family in the brown algal model Ectocarpus siliculosus. Mar Genomics. 2008;1(3):135–48.PubMed CrossRef
    74.Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31(11):1287–312.PubMed CrossRef
    75.Poynton RA, Hampton MB. Peroxiredoxins as biomarkers of oxidative stress. Biochimica et Biophysica Acta (BBA)-General Subjects. 2014;1840(2):906–12.CrossRef
    76.Dietz K-J. Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal. 2011;15(4):1129–59.PubMed PubMedCentral CrossRef
    77.Ritter A, Dittami SM, Goulitquer S, Correa JA, Boyen C, Potin P, et al. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biol. 2014;14(1):116.PubMed PubMedCentral CrossRef
    78.Lovazzano C, Serrano C, Correa JA, Contreras-Porcia L. Comparative analysis of peroxiredoxin activation in the brown macroalgae Scytosiphon gracilis and Lessonia nigrescens (Phaeophyceae) under copper stress. Physiol Plant. 2013;149(3):378–88.PubMed
    79.Sordet C, Contreras-Porcia L, Lovazzano C, Goulitquer S, Andrade S, Potin P, et al. Physiological plasticity of Dictyota kunthii (Phaeophyceae) to copper excess. Aquat Toxicol. 2014;150:220–8.
  • 作者单位:Ruoyu Guo (1)
    Hui Wang (1)
    Young Sang Suh (2)
    Jang-Seu Ki (1)

    1. Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 110-743, Korea
    2. Fishery and Ocean Information Division, National Fisheries Research & Development Institute, Busan, 619-705, Korea
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Harmful algal blooms (HABs) caused by the dinoflagellate Cochlodinium polykrikoides lead to severe environmental impacts in oceans worldwide followed by huge economic losses. Algicide agent copper sulfate (CuSO<sub>4sub>) is regard as an economical and effective agent for HABs mitigation; its biochemical and physiological effects were revealed in C. polykrikoides. However, molecular mechanisms of CuSO<sub>4sub> effect on the C. polykrikoides, even other HAB species, have not been investigated. The present study investigated the transcriptional response of C. polykrikoides against CuSO<sub>4sub> treatments, with the aim of providing certain molecular mechanism of CuSO<sub>4sub> effect on the C. polykrikoides blooms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700