Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination
详细信息    查看全文
  • 作者:Chao Liang ; Shifeng Cheng ; Youjun Zhang ; Yuzhe Sun ; Alisdair R. Fernie…
  • 关键词:ATP ; Chloroplast ; Mitochondria ; Metabolomics ; Proteomics ; Transcriptomics
  • 刊名:BMC Plant Biology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:3,088 KB
  • 参考文献:1.Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, et al. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. The Plant cell. 2001;13(12):2589–607.PubMedCentral CrossRef PubMed
    2.Rossel JB, Wilson IW, Pogson BJ. Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol. 2002;130(3):1109–20.PubMedCentral CrossRef PubMed
    3.Kim BH, von Arnim AG. The early dark-response in Arabidopsis thaliana revealed by cDNA microarray analysis. Plant Mol Biol. 2006;60(3):321–42.CrossRef PubMed
    4.Satou M, Enoki H, Oikawa A, Ohta D, Saito K, Hachiya T, et al. Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. Plant Mol Biol. 2014;85(4-5):411–28.PubMedCentral CrossRef PubMed
    5.Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008;9(8):R130.PubMedCentral CrossRef PubMed
    6.Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19(3):1720–30.PubMedCentral CrossRef PubMed
    7.Fernie AR, Stitt M. On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiol. 2012;158(3):1139–45.PubMedCentral CrossRef PubMed
    8.Motohashi R, Rodiger A, Agne B, Baerenfaller K, Baginsky S. Common and specific protein accumulation patterns in different albino/pale-green mutants reveals regulon organization at the proteome level. Plant Physiol. 2012;160(4):2189–201.PubMedCentral CrossRef PubMed
    9.Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18(11):1157–61.CrossRef PubMed
    10.Liang C, Zhang Y, Cheng S, Osorio S, Sun Y, Fernie AR, et al. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana. Front Plant Sci. 2015;6:922.PubMedCentral CrossRef PubMed
    11.Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 2012;22(6):1184–95.PubMedCentral CrossRef PubMed
    12.Staiger D, Zecca L, Wieczorek Kirk DA, Apel K, Eckstein L. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J. 2003;33(2):361–71.CrossRef PubMed
    13.Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature. 2010;468(7320):112–6.CrossRef PubMed
    14.Palusa SG, Ali GS, Reddy ASN. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J. 2007;49(6):1091–107.CrossRef PubMed
    15.Kromer S, Heldt HW. On the Role of Mitochondrial Oxidative Phosphorylation in Photosynthesis Metabolism as Studied by the Effect of Oligomycin on Photosynthesis in Protoplasts and Leaves of Barley (Hordeum vulgare). Plant Physiol. 1991;95(4):1270–6.PubMedCentral CrossRef PubMed
    16.Kromer S, Malmberg G, Gardestrom P. Mitochondrial Contribution to Photosynthetic Metabolism (A Study with Barley (Hordeum vulgare L.) Leaf Protoplasts at Different Light Intensities and CO2 Concentrations). Plant Physiol. 1993;102(3):947–55.PubMedCentral PubMed
    17.Gardestrom P, Lernmark U. The contribution of mitochondria to energetic metabolism in photosynthetic cells. J Bioenerg Biomembr. 1995;27(4):415–21.CrossRef PubMed
    18.Igamberdiev AU, Shen T, Gardestrom P. Function of mitochondria during the transition of barley protoplasts from low light to high light. Planta. 2006;224(1):196–204.CrossRef PubMed
    19.Law YS, Zhang R, Guan X, Cheng S, Sun F, Duncan O, et al. Phosphorylation and Dephosphorylation of the Presequence of pMORF3 During Import into Mitochondria from Arabidopsis thaliana. Plant Physiol. 2015;169:1–12.CrossRef
    20.Herranen M, Tyystjarvi T, Aro EM. Regulation of photosystem I reaction center genes in Synechocystis sp. strain PCC 6803 during Light acclimation. Plant Cell Physiol. 2005;46(9):1484–93.CrossRef PubMed
    21.Adachi Y, Kuroda H, Yukawa Y, Sugiura M. Translation of partially overlapping psbD-psbC mRNAs in chloroplasts: the role of 5’-processing and translational coupling. Nucleic Acids Res. 2012;40(7):3152–8.PubMedCentral CrossRef PubMed
    22.Reiland S, Grossmann J, Baerenfaller K, Gehrig P, Nunes-Nesi A, Fernie AR, et al. Integrated proteome and metabolite analysis of the de-etiolation process in plastids from rice (Oryza sativa L.). Proteomics. 2011;11(9):1751–63.CrossRef PubMed
    23.Schuhmann H, Adamska I. Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiol Plant. 2012;145(1):224–34.CrossRef PubMed
    24.Zienkiewicz M, Ferenc A, Wasilewska W, Romanowska E. High light stimulates Deg1-dependent cleavage of the minor LHCII antenna proteins CP26 and CP29 and the PsbS protein in Arabidopsis thaliana. Planta. 2012;235(2):279–88.CrossRef PubMed
    25.Yagi Y, Shiina T. Recent advances in the study of chloroplast gene expression and its evolution. Front Plant Sci. 2014;5:61.PubMedCentral CrossRef PubMed
    26.Baba K, Schmidt J, Espinosa-Ruiz A, Villarejo A, Shiina T, Gardestrom P, et al. Organellar gene transcription and early seedling development are affected in the rpoT;2 mutant of Arabidopsis. Plant J. 2004;38(1):38–48.CrossRef PubMed
    27.Allison LA, Simon LD, Maliga P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 1996;15(11):2802–9.PubMedCentral PubMed
    28.Liere K, Weihe A, Borner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. J Plant Physiol. 2011;168(12):1345–60.CrossRef PubMed
    29.Kuhn K, Richter U, Meyer EH, Delannoy E, de Longevialle AF, O’Toole N, et al. Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell. 2009;21(9):2762–79.PubMedCentral CrossRef PubMed
    30.Kwasniak M, Majewski P, Skibior R, Adamowicz A, Czarna M, Sliwinska E, et al. Silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein alters translation in arabidopsis mitochondria. Plant Cell. 2013;25(5):1855–67.PubMedCentral CrossRef PubMed
    31.Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM. An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell. 2010;22(1):221–33.PubMedCentral CrossRef PubMed
    32.Sweetlove LJ, Beard KF, Nunes-Nesi A, Fernie AR, Ratcliffe RG. Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 2010;15(8):462–70.CrossRef PubMed
    33.Cheung CY, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ. A Diel Flux Balance Model Captures Interactions between Light and Dark Metabolism during Day-Night Cycles in C3 and Crassulacean Acid Metabolism Leaves. Plant Physiol. 2014;165(2):917–29.PubMedCentral CrossRef PubMed
    34.Poolman MG, Miguet L, Sweetlove LJ, Fell DA. A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol. 2009;151(3):1570–81.PubMedCentral CrossRef PubMed
    35.Szecowka M, Heise R, Tohge T, Nunes-Nesi A, Vosloh D, Huege J, et al. Metabolic fluxes in an illuminated Arabidopsis rosette. Plant Cell. 2013;25(2):694–714.PubMedCentral CrossRef PubMed
    36.Nunes-Nesi A, Araujo WL, Obata T, Fernie AR. Regulation of the mitochondrial tricarboxylic acid cycle. Curr Opin Plant Biol. 2013;16(3):335–43.CrossRef PubMed
    37.Barakat A, Szick-Miranda K, Chang IF, Guyot R, Blanc G, Cooke R, et al. The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol. 2001;127(2):398–415.PubMedCentral CrossRef PubMed
    38.Liu MJ, Wu SH, Chen HM. Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol Syst Biol. 2012;8:566.PubMedCentral CrossRef PubMed
    39.Narsai R, Howell KA, Millar AH, O’Toole N, Small I, Whelan J. Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. Plant Cell. 2007;19(11):3418–36.PubMedCentral CrossRef PubMed
    40.Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Gene Dev. 2006;20(5):515–24.CrossRef PubMed
    41.Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.CrossRef PubMed
    42.Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.CrossRef PubMed
    43.Huang S, Zhang J, Li R, Zhang W, He Z, Lam TW, et al. SOAPsplice: Genome-Wide ab initio Detection of Splice Junctions from RNA-Seq Data. Front Genet. 2011;2:46.PubMedCentral CrossRef PubMed
    44.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRef PubMed
    45.Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69.CrossRef PubMed
    46.Zhao Y, Kong RP, Li G, Lam MP, Law CH, Lee SM, et al. Fully automatable two-dimensional hydrophilic interaction liquid chromatography-reversed phase liquid chromatography with online tandem mass spectrometry for shotgun proteomics. J Sep Sci. 2012;35(14):1755–63.CrossRef PubMed
    47.Meyer EH, Tomaz T, Carroll AJ, Estavillo G, Delannoy E, Tanz SK, et al. Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. Plant Physiol. 2009;151(2):603–19.PubMedCentral CrossRef PubMed
    48.Ford SR, Leach FR. Bioluminescent assay of the adenylate energy charge. Methods Mol Biol. 1998;102:69–81.PubMed
    49.Foyer C, Lelandais M, Galap C, Kunert KJ. Effects of Elevated Cytosolic Glutathione Reductase Activity on the Cellular Glutathione Pool and Photosynthesis in Leaves under Normal and Stress Conditions. Plant Physiol. 1991;97(3):863–72.PubMedCentral CrossRef PubMed
    50.Queval G, Noctor G. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development. Anal Biochem. 2007;363(1):58–69.CrossRef PubMed
    51.Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc. 2006;1(1):387–96.CrossRef PubMed
    52.Luedemann A, von Malotky L, Erban A, Kopka J. TagFinder: preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses. Methods Mol Biol. 2012;860:255–86.CrossRef PubMed
    53.Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, et al. GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics. 2005;21(8):1635–8.CrossRef PubMed
    54.Aggio RB, Ruggiero K, Villas-Boas SG. Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity. Bioinformatics. 2010;26(23):2969–76.CrossRef PubMed
    55.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.PubMedCentral CrossRef PubMed
  • 作者单位:Chao Liang (1)
    Shifeng Cheng (1)
    Youjun Zhang (2)
    Yuzhe Sun (1)
    Alisdair R. Fernie (2)
    Kang Kang (1)
    Gianni Panagiotou (1)
    Clive Lo (1)
    Boon Leong Lim (1) (3)

    1. School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
    2. Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
    3. State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background Light plays an important role in plant growth and development. In this study, the impact of light on physiology of 20-d-old Arabidopsis leaves was examined through transcriptomic, proteomic and metabolomic analysis. Since the energy-generating electron transport chains in chloroplasts and mitochondria are encoded by both nuclear and organellar genomes, sequencing total RNA after removal of ribosomal RNAs provides essential information on transcription of organellar genomes. The changes in the levels of ADP, ATP, NADP+, NADPH and 41 metabolites upon illumination were also quantified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700