Hydro-thermo-mechanical analysis on high cycle thermal fatigue induced by thermal striping in a T-junction
详细信息    查看全文
  • 作者:Sun-Hye Kim (1) (2)
    Nam-Su Huh (3)
    Moon-Ki Kim (4)
    Dae-Geun Cho (1)
    Young-Hwan Choi (2)
    Jin-Ho Lee (2)
    Jae-Boong Choi (1) (4)
  • 关键词:Fluid ; structure interaction problem ; One ; way separate analysis ; High cycle thermal fatigue ; Turbulent mixing ; Thermal striping striping
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:27
  • 期:10
  • 页码:3087-3095
  • 全文大小:6303KB
  • 参考文献:1. M. Wakamatsu, H. Nei and K. Hashiguchi, Attenuation of temperature fluctuations in thermal striping, / Journal of Nuclear Science and Technology, 32 (1995) 752鈥?62. CrossRef
    2. S. Chapuliot, C. Courdin, T. Payen, J. P. Magnaud and A. Monavon, Hydro-thermal-mechanical analysis of thermal fatigue in a mixing tee, / Nuclear Engineering and Design, 235 (2005) 575鈥?96. CrossRef
    3. T. Pasutto, C. Peniguel and M. Sakiz, Chained computations using an unsteady 3D approach for the determination of thermal fatigue in a T junction of a PWR nuclear plant, / Nuclear Engineering and Technology, 38 (2006) 147鈥?54.
    4. C. Faidy, Thermal fatigue in French RHR system, / International Conference on Fatigue of Reactors Components, Napa, USA (2000).
    5. J. M. Stephan and F. Curtit, Mechanical aspects concerning thermal fatigue initiation in the mixing zones of piping, / 18th International Conference on Structural Mechanics in Reactor Technology, Beijing, China (2005) 1105鈥?117.
    6. K. J. Metzner and U. Wilke, European THERFAT project-thermal fatigue evaluation of piping system tee-connections, / Nuclear Engineering and Design, 235 (2005) 473鈥?84. CrossRef
    7. M. Dahlberg, K. F. Nilsson, N. Taylor, C. Faidy, U. Wilke, S. Chapuliot, D. Kalkhof, I. Bretherton, M. Church, J. Solin and J. Catalano, Development of a European procedure for assessment of high cycle thermal fatigue in light water reactors: final report of the NESC-thermal fatigue project, / European Commission, ZG Petten, Netherlands (2007).
    8. JSME, / Guideline for evaluation of high-cycle thermal fatigue of a pipe (2003).
    9. I. S. Jones, The frequency response model of thermal striping for cylindrical geometries, / Fatigue & Fracture of Engineering Materials & Structures, 20 (1997) 871鈥?82. CrossRef
    10. I. S. Jones, Impulse response model of thermal striping for hollow cylindrical geometries, / Theoretical and Applied Fracture Mechanics, 43 (2005) 77鈥?8. CrossRef
    11. S. Okajima, S. Sakai, S. Izumi, A. Iwasaki and N. Kasahara, Fatigue damage evaluation for thermal striping phenomena using analytical spectrum method, / ASME Pressure Vessels and Piping Division Conference, Denver, USA (2005) PVP2005鈥?1682.
    12. V. Radu, E. Paffumi, N. Taylor and K. F. Nilsson, A study on fatigue crack growth in the high cycle domain assuming sinusoidal thermal loading, / International Journal of Pressure Vessels and Piping, 86 (2009) 818鈥?29. CrossRef
    13. M. H. C. Hannink, A. K. kuczaj, F. J. Blom, J. M. Church and E. M. J. Komen, A coupled CFD-FEM strategy to predict thermal fatigue in mixing tees of nuclear reactors, / EUROSAFE, Paris, France (2008).
    14. M. H. C. Hannink and F. J. Blom, Numerical methods for the prediction of thermal fatigue due to turbulent mixing, / Nuclear Engineering and Design, 241 (2011) 681鈥?87. CrossRef
    15. M. Kamaya and A. Nakamura, Thermal stress analysis for fatigue damage evaluation at a mixing tee, / Nuclear Engineering and Design, 241 (2011) 2674鈥?687. CrossRef
    16. T. Frank, C. Lifante, H. M. Prasser and F. Menter, Simulation of turbulent and thermal mixing in T-junctions using URANS and scale-resolving turbulence models in ANSYS CFX, / Nuclear Engineering and Design, 240 (2010) 2313鈥?328. CrossRef
    17. ANSYS, / ANSYS CFX 12.1 user manual, ANSYS Inc., Canonsburg, USA (2009).
    18. A. Nakamura, T. Oumaya and N. Takenaka, Numerical investigation of thermal striping at a mixing tee using detached eddy simulation, / The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (2009).
    19. J. Westin, F. Alavyoon, L. Andersson, P. Veber, M. E. Henriksson and C. Andersson, Experiments and unsteady CFD calculations of thermal mixing in a T-junction, / OECD/NEA/IAEA Workshop on the Benchmarking of CFD Codes for Application to Nuclear Reactor Safety, Munich, Germany (2006) 1鈥?5.
    20. J. Westin, P. Veber, L. Andersson, C. T. Mannetje, U. Andersson, J. Eriksson, M. E. Henriksson, F. Alavyoon and C. Andersson, High-Cycle Thermal Fatigue in Mixing Tees: Large-Eddy Simulations Compared to a New Validation Experiment, / ASME Conference Proceedings (2008) 515鈥?25.
    21. J. R. Forsythe, K. A. Hoffmann, R. M. Cummings and K. D. Squires, Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow, / Journal of Fluids Engineering, 124 (2002) 911鈥?23. CrossRef
    22. P. R. Spalart, Detached-Eddy Simulation, / Annual Review of Fluid Mechanics, 41 (2009) 181鈥?02. CrossRef
    23. J. M. Kay and R. M. Nedderman, / Fluid Mechanics and Transfer Processes, Cambridge University Press (1985).
    24. F. M. White, / Fluid mechanics, WCB/McGraw-Hill (1999).
    25. S. T. Jayaraju, E. M. J. Komen and E. Baglietto, Suitability of wall-functions in Large Eddy Simulation for thermal fatigue in a T-junction, / Nuclear Engineering and Design, 240 (2010) 2544鈥?554. CrossRef
    26. A. K. Kuczaj, B. D. Jager and E. Komen, An assessment of large eddy simulation for thermal fatigue prediction, / International Congress on Advances in Nuclear Power Plants (2008).
    27. Y. Odemark, T. M. Green, K. Angele, J. Westin, F. Alavyoon and S. Lundstrom, High-Cycle Thermal Fatigue in Mixing Tees: New Large-Eddy Simulations Validated Against New Data Obtained by PIV in the Vattenfall Experiment, / ASME Conference Proceedings (2009) 775鈥?85.
    28. H. Kamide, M. Igarashi, S. Kawashima, N. Kimura and K. Hayashi, Study on mixing behavior in a tee piping and numerical analyses for evaluation of thermal striping, / Nuclear Engineering and Design, 239 (2009) 58鈥?7. CrossRef
    29. J. W. Kim and J. J. Jeong, Large eddy simulation of turbulent flow in a T-Junction, / Numerical Heat Transfer, Part A: Applications, 61 (2012) 180鈥?00. CrossRef
    30. ANSYS, / ANSYS 12.1 mechanical APDL documentation, ANSYS Inc., Canonsburg, USA (2009).
    31. N. Kasahara, N. Kimura and H. Kamide, Thermal fatigue evaluation method based on power spectrum density functions against fluid temperature fluctuation, / ASME Pressure Vessels and Piping Division Conference, Denver, USA (2005) PVP2005鈥?1307.
    32. N. Kasahara, H. Takasho and A. Yacumpai, Structural response function approach for evaluation of thermal striping phenomena, / Nuclear Engineering and Design, 212 (2002) 281鈥?92. CrossRef
  • 作者单位:Sun-Hye Kim (1) (2)
    Nam-Su Huh (3)
    Moon-Ki Kim (4)
    Dae-Geun Cho (1)
    Young-Hwan Choi (2)
    Jin-Ho Lee (2)
    Jae-Boong Choi (1) (4)

    1. Department of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-726, Korea
    2. Korea Institute of Nuclear Safety, Daejeon, 305-338, Korea
    3. Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul, 139-746, Korea
    4. SKKU Advanced Institute of Nanotechnology, Suwon, 440-726, Korea
  • ISSN:1976-3824
文摘
Turbulent mixing in a T-junction causes thermal striping which is irregular and frequent fluctuation of thermal layer. Thermal striping is a significant thermal problem because it causes unpredicted high cycle thermal fatigue and fatigue cracking in piping systems. Since this phenomenon is hardly detected by common plant instruments due to high frequency and complex mechanism, numerical approaches are indispensable for a precise evaluation. This research was carried out to define a suitable and effective numerical method for evaluating thermal stress and fatigue induced by thermal striping. A three-dimensional hydro-thermo-mechanical analysis was performed based on one-way separate analysis method to find out the characteristics of stress components and its results were compared to the results of a one-dimensional simplified analysis. It was found that the detailed three-dimensional analysis is indispensable because one-dimensional simplified analysis can overestimate or underestimate according to the assumed heat transfer coefficient and cannot estimate the considerable mean stress effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700