Enhancing the activity of Bacillus circulans xylanase by modulating the flexibility of the hinge region
详细信息    查看全文
  • 作者:Fukura Kazuyo (1)
    So Yeon Hong (1)
    Young Joo Yeon (2)
    Jeong Chan Joo (2) (4)
    Young Je Yoo (1) (2) (3)
  • 关键词:Xylanase ; Activity ; Dynamics ; Flexibility ; Hinge
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:41
  • 期:8
  • 页码:1181-1190
  • 全文大小:775 KB
  • 参考文献:1. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257鈥?70 CrossRef
    2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72(1鈥?):248鈥?54 CrossRef
    3. Fisher CL, Pei GK (1997) Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23(4):570鈥?74
    4. Frey PA (2001) Strong hydrogen bonding in molecules and enzymatic complexes. Magn Reson Chem 39((Spec. Iss.)):S190鈥揝198 CrossRef
    5. Hammes GG (2002) Multiple conformational changes in enzyme catalysis. Biochemistry 41(26):8221鈥?228 CrossRef
    6. Hayward S (1999) Structural principles governing domain motions in proteins. Proteins Struct Funct Genet 36(4):425鈥?35 CrossRef
    7. Hayward S, Berendsen HJC (1998) Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins Struct Funct Genet 30(2):144鈥?54 CrossRef
    8. Joo JC, Pack SP, Kim YH, Yoo YJ (2011) Thermostabilization of / Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J Biotechnol 151(1):56鈥?5 CrossRef
    9. Kim T, Joo JC, Yoo YJ (2012) Hydrophobic interaction network analysis for thermostabilization of a mesophilic xylanase. J Biotechnol 161(1):49鈥?9 CrossRef
    10. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins Struct Funct Bioinform 77(4):778鈥?95 CrossRef
    11. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658鈥?66 CrossRef
    12. Ludwiczek ML, Heller M, Kantner T, McIntosh LP (2007) A Secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. J Mol Biol 373(2):337鈥?54 CrossRef
    13. Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11(2):184鈥?97 CrossRef
    14. Muilu J, T枚rr枚nen A, Per盲kyl盲 M, Rouvinen J (1998) Functional conformational changes of endo-1,4-xylanase II from Trichoderma reesei: a molecular dynamics study. Proteins Struct Funct Genet 31(4):434鈥?44 CrossRef
    15. Plesniak LA, Wakarchuk WW, McIntosh LP (1996) Secondary structure and NMR assignments of / Bacillus circulans xylanase. Protein Sci 5(6):1118鈥?135 CrossRef
    16. Pollet A, Vandermarliere E, Lammertyn J, Strelkov SV, Delcour JA, Courtin CM (2009) Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Proteins Struct Funct Bioinform 77(2):395鈥?03 CrossRef
    17. Potestio R, Pontiggia F, Micheletti C (2009) Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophys J 96(12):4993鈥?002 CrossRef
    18. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic disorder. Protein Sci 13(1):71鈥?0 CrossRef
    19. Schein CH, Noteborn MHM (1988) Formation of soluble recombinant proteins in / Escherichia coli is favored by lower growth temperature. BioTechnology 6(3):291鈥?94 CrossRef
    20. Schramm AM, Mehra-Chaudhary R, Furdui CM, Beamer LJ (2008) Backbone flexibility, conformational change, and catalysis in a phosphohexomutase from / Pseudomonas aeruginosa. Biochemistry 47(35):9154鈥?162 CrossRef
    21. Schulz GE (1991) Domain motions in proteins. Curr Opin Struct Biol 1(6):883鈥?88 CrossRef
    22. Sime JT (1999) Applications of biocatalysis to industrial processes. J Chem Educ 76(12):1658鈥?661 CrossRef
    23. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33鈥?4 CrossRef
    24. Sung WL, Luk CK, Zahab DM, Wakarchuk W (1993) Overexpression of the / Bacillus subtilis and / circulans xylanases in / Escherichia coli. Protein Expr Purif 4(3):200鈥?06 CrossRef
    25. Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein interactions calculator. Nucleic Acids Res 35(Suppl.2):W473鈥揥476 CrossRef
    26. Wells S, Menor S, Hespenheide B, Thorpe MF (2005) Constrained geometric simulation of diffusive motion in proteins. Phys Biol 2(4):S127鈥揝136 CrossRef
    27. Yon JM, Perahia D, Gh茅lis C (1998) Conformational dynamics and enzyme activity. Biochimie 80(1):33鈥?2 CrossRef
    28. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32(14):e115 CrossRef
  • 作者单位:Fukura Kazuyo (1)
    So Yeon Hong (1)
    Young Joo Yeon (2)
    Jeong Chan Joo (2) (4)
    Young Je Yoo (1) (2) (3)

    1. Graduate Program of Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
    2. School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
    4. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
    3. Bio-MAX Institute, Seoul National University, Seoul, 151-742, Republic of Korea
  • ISSN:1476-5535
文摘
Enzymes undergo multiple conformational changes in solution, and these dynamics are considered to play a critical role in enzyme activity. Hinge-bending motions, resulting from reciprocal movements of dynamical quasi-rigid bodies, are thought to be related to turnover rate and are affected by the physical properties of the hinge regions. In this study, hinge identification and flexibility modification of the regions by mutagenesis were conducted to explore the relationship between hinge flexibility and catalytic activity. Bacillus circulans xylanase was selected for the identification and mutation of the hinge regions. As a result, turnover rate (V max) was improved approximately twofold in mutants that have more rigid hinge structure, despite the decrease in K m and V max/K m. This result indicates that the rigidly mutated hinge has positive effects on B. circulans xylanase activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700