Environmentally sustainable production of tomato in a coir substrate hydroponic system using a frequency domain reflectometry sensor
详细信息    查看全文
  • 作者:Eun-Young Choi ; Yong-Han Yoon ; Ki-Young Choi…
  • 关键词:leachate ; retained water volume ; volumetric water content ; water use efficiency
  • 刊名:Horticulture, Environment, and Biotechnology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:56
  • 期:2
  • 页码:167-177
  • 全文大小:488 KB
  • 参考文献:Abad, M., P. Noguera, R. Puchades, A. Maquieira, and V. Noguera. 2002. Physico-chemical and chemical properties of some coconut dusts for use as a peat substitute for containerised ornamental plants. Biores. Technol. 82:241-45.View Article
    Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration, guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, FAO, Rome, Italy.
    Arguedas, F.R., J.D. Lea-Cox, and A.G. Ristvey. 2007. Revisiting the measurement of plant available water in soilless substrates. Proc. Southern Nursery Assoc. Res. Conf. 52:111-15.
    Ben-Asher, J., C.J. Phene, and A. Kinarti. 1992. Canopy temperature to assess daily evapotranspiration and management of high frequency drip irrigation systems. Agr. Water Manag. 22:379-90.View Article
    Blok, C. and J.B.G.M. Verhagen. 2009. Trends in rooting media inDutch horticulture during the period 2001-2005: The new growing media project. Acta Hortic. 819:47-8.
    Burnett, S.E. and M.W. van Iersel. 2008. Morphology and irrigation efficiency of Gaura lindheimeri growth with capacitance sensorcontrolled irrigation. HortScience 43:1555-560.
    Cardenas-Lailhacar, B., M.D. Dukes, and G.L. Miller. 2010. Sensor-based automation of irrigation on bermudagrass, during wet weather conditions. J. Irr. Drain. Eng. 134:120-28.View Article
    Choi, E.Y., K.Y. Choi, and Y.B. Lee. 2013a. Non-drainage irrigation scheduling in coir substrate hydroponic system for tomato cultivation by a frequency domain reflectometry sensor. Europ. J. Hortic. Sci. 78:132-43.
    Choi, E.Y., S.K. Seo, K.Y. Choi, and Y.B. Lee. 2014. Development of a non-drainage hydroponic system with a coconut coir substrate by a frequency domain reflectometry sensor for tomato cultivation. J. Plant Nutr. 37:748-64.View Article
    Choi, E.Y., Y.H. Woo, M. Son, K.Y. Choi, and Y.B. Lee. 2013b. Nutrient solution concentration effects on non-drainage irrigation scheduling in coir substrate hydroponic system for tomato cultivation by a FDR sensor. Intl. J. Food Agr. Environ. 11:636-41.
    Ehret, D.L., J.G. Menzies, and T. Helmer. 2005. Production and quality of greenhouse roses in recirculating nutrient systems. Sci. Hortic. 106:103-13.View Article
    Fares, A. and V. Polyakov. 2006. Advances in crop water management using capacitive water sensors. Adv. Agron. 90:43-7.View Article
    Farina, E., F. Di Battista, and M. Palagi. 2007. Automation of irrigation in hydroponics by FDR sensors-Experimental results from field trials. Acta Hortic. 747:193-96.
    Fernandez, J.E., S.R. Green, H.W. Caspari, A. Diaz-Espero, and M.V. Cuevas. 2008. The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant Soil 305:91-04.View Article
    Fricke, A. 1998. Influence of different surplus irrigation and substrate on production of greenhouse tomatoes. Acta Hortic. 458:33-2.
    Giuffrida, F., S. Argento, V. Lipari, and C. Leonardi. 2003. Methods for controlling salt accumulation in substrate cultivation. Acta Hortic. 614:799-03.
    Hilhorst, M.A. 2000. A pore water conductivity sensor. Soil Sci. Soc. Am. J. 64:1922-925.View Article
    Hook, W.R. and N.J. Livingston. 1996. Errors in converting time domain reflectometry measurements of propagation velocity to estimates of soil water content. Soil Sci. Soc. Am. J. 60:35-1.View Article
    Jaimez, R.E., F. Rada, and C. García-Nu?ez. 1999. The effect of irrigation frequency on water and carbon relations in three cultivars of sweet pepper (Capsicum chinense Jacq), in a tropical semiarid region. Sci. Hortic. 81:301-08.View Article
    J?rgensen, L., D.B. Dresb?ll, and K. Thorup-Kristensen. 2014. Root growth of perennials in vertical growing media for use in green walls. Sci. Hortic. 166: 31-1.View Article
    Kang, J.G. and M.W. van Iersel. 2001. Interactions between temperature and fertilizer concentration affect growth of subirrigated petunias. J. Plant Nutr. 24:753-65.View Article
    Lin, C.P. 2003. Frequency domain versus travel time analyses of TDR waveforms for soil moisture measurements. Soil Sci. Soc. Am. J. 67:720-29.View Article
    Noguera, P., M. Abad, V. Noguera, R. Puchades, and A. Maquieira. 2000. Coconut coir waste, a new and viable ecologically-friendly peat substitute. Acta Hortic. 517:279-86.
    Osvalde, A. 2011. Optimization of plant mineral nutrition revisited: The roles of plant requirements, nutrient interactions, and soil properties in fertilization management. Environ. Expt. Biol. 9:1-.
    Papadopoulos, A.P., U. Saha, X. Hao, and S. Khosla. 2008. Irrigation management in greenhouse tomato production in rockwool. Acta Hortic. 799:521-28.
    Raviv, M., S. Medina, Y. Shamir, and Z. Ner. 1993. Very low medium moisture tension-A feasible criterion for irrigation control of container-grown plants. Acta Hortic. 342:111-20.
    Romero, R., J.L. Muriel, and I. Garcia. 2009. Automatic irrigation system in almonds and waln
  • 作者单位:Eun-Young Choi (1)
    Yong-Han Yoon (2)
    Ki-Young Choi (3)
    Yong-Beom Lee (4)

    1. Department of Agricultural Science, Korea National Open University, 86 Daehak-ro, Jongro-gu, Seoul, 110-791, Korea
    2. Department of Green Convergence Technology, 268 Chungwondae-ro, Chungcheongbuk-do, 380-701, Korea
    3. Department. of Controlled Agriculture, Kangwon National University, 1 Kangwondae-gil, Chuncheon, Gangwon-do, 200-701, Korea
    4. Department of Environmental Horticulture, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul, 130-743, Korea
  • 刊物主题:Life Sciences, general; Plant Breeding/Biotechnology; Plant Physiology; Agriculture; Plant Ecology;
  • 出版者:Springer Netherlands
  • ISSN:2211-3460
文摘
Open hydroponic systems are the most widely used hydroponic systems in Korea. However, water drainage from the open hydroponics often causes significant environmental pollution due to agrochemicals and loss of water and nutrients. The objectives of this study were to show the potential application of an irrigation schedule based on threshold values of volumetric substrate water content tomato (Solanum lycopersicum L. ‘Betatini- cultivation in a commercial hydroponic farm. This study was performed for minimizing effluent from coir substrate hydroponics using a frequency domain reflectometry (FDR) sensor-automated irrigation (FAI), as compared with conventional timer-irrigation (TIMER) from the farmer’s experience. The irrigation volume and retained water volume in the substrate of the TIMER during autumn to winter cultivation were 6.1-fold and 2-fold higher, respectively, than those of the FAI with slightly higher fruit weight and no difference in plant growth in the TIMER. This resulted in 1.9-fold higher water use efficiency (WUE) in the FAI. The irrigation volume and retained water volume in the substrate of TIMER during spring to summer were 3.2-fold and 1.8-fold higher, respectively, than those of the FAI with no difference in fruit weight or plant growth between the two treatments, which led to a 1.9-fold higher WUE in FAI. Approximately 61% fertilizer cost savings and a substantial decrease in drained solution volume were observed for FAI compared to those with TIMER. The use of the FAI technique for a least-drainage hydroponic system can be achieved in a large-scale hydroponic farm, resulting in efficient and environmentally sustainable use of water and fertilizer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700