Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization
详细信息    查看全文
  • 作者:Min-Kyoung Kang (1)
    Jungseok Lee (1) (2)
    Youngsoon Um (1) (4)
    Taek Soon Lee (5) (6)
    Michael Bott (7)
    Si Jae Park (8)
    Han Min Woo (1) (3) (4)
  • 关键词:Corynebacterium glutamicum ; Synthetic biology ; Metabolic engineering ; BglBrick
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:98
  • 期:13
  • 页码:5991-6002
  • 全文大小:
  • 参考文献:1. Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in / Escherichia coli. Science 330(6000):70-4 CrossRef
    2. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in / Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11(1):13-9 CrossRef
    3. Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels-em class="a-plus-plus">Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23(4):631-40 CrossRef
    4. Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in / Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360-369 CrossRef
    5. Boyle PM, Burrill DR, Inniss MC, Agapakis CM, Deardon A, Dewerd JG, Gedeon MA, Quinn JY, Paull ML, Raman AM, Theilmann MR, Wang L, Winn JC, Medvedik O, Schellenberg K, Haynes KA, Viel A, Brenner TJ, Church GM, Shah JV, Silver PA (2012) A BioBrick compatible strategy for genetic modification of plants. J Biol Eng 6(1):8 CrossRef
    6. Buschke N, Becker J, Sch?fer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose‐utilizing / Corynebacterium glutamicum for production of 1,5‐diaminopentane. Biotechnol J 8(5):557-70 CrossRef
    7. Choi YJ, Park JH, Kim TY, Lee SY (2012) Metabolic engineering of / Escherichia coli for the production of 1-propanol. Metab Eng 14(5):477-86 CrossRef
    8. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753-59 CrossRef
    9. Dusch N, Pühler A, Kalinowski J (1999) Expression of the / Corynebacterium glutamicum panD gene encoding l -aspartate-alpha-decarboxylase leads to pantothenate overproduction in / Escherichia coli. Appl Environ Microbiol 65(4):1530-539
    10. Eggeling L, Bott M (2005) Handbook of / Corynebacterium glutamicum. CRC Press, Boca Raton
    11. Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of / Corynebacterium glutamicum/ / Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102(1):93-8 CrossRef
    12. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343-45 CrossRef
    13. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS (2011) Engineered / Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108(2):504-09 CrossRef
    14. Harth G, Masle?a-Gali? S, Horwitz MA (2004) A two-plasmid system for stable, selective-pressure-independent expression of multiple extracellular proteins in mycobacteria. Microbiology 150(7):2143-151 CrossRef
    15. Hillson NJ (2011) DNA assembly method standardization for synthetic biomolecular circuits and systems. Design and Analysis of Biomolecular Circuits. Springer, New York, pp 295-14 CrossRef
    16. Huang H-H, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577-593 CrossRef
    17. Ikeda M, Nakagawa S (2003) The / Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2-):99-09 CrossRef
    18. Jakoby M, Ngouoto-Nkili C-E, Burkovski A (1999) Construction and application of new / Corynebacterium glutamicum vectors. Biotechnol Tech 13(6):437-41 CrossRef
    19. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L (2003) The complete / Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l -aspartate-derived amino acids and vitamins. J Biotechnol 104(1):5-5 CrossRef
    20. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in / Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418-428 CrossRef
    21. Keasling JD (2008) From yeast to alkaloids. Nat Chem Biol 4(9):524-25 CrossRef
    22. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189-95 CrossRef
    23. Koffas MA, Jung GY, Stephanopoulos G (2003) Engineering metabolism and product formation in / Corynebacterium glutamicum by coordinated gene overexpression. Metab Eng 5(1):32-1 CrossRef
    24. Lausberg F, Chattopadhyay AR, Heyer A, Eggeling L, Freudl R (2012) A tetracycline inducible expression vector for / Corynebacterium glutamicum allowing tightly regulable gene expression. Plasmid 68(2):142-47 CrossRef
    25. Lee JW, Kim TY, Jang Y-S, Choi S, Lee SY (2011a) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29(8):370-78 CrossRef
    26. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD (2011b) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:12 CrossRef
    27. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251-56 CrossRef
    28. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by / Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131-40 CrossRef
    29. Nesvera J, Patek M, Hochmannova J, Abrhamova Z, Becvarova V, Jelinkova M, Vohradsky J (1997) Plasmid pGA1 from / Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179(5):1525-532
    30. Pátek M, Nesvera J (2013) Promoters and plasmid vectors of / Corynebacterium glutamicum in / Corynebacterium glutamicum: biology and biotechnology, 2nd edn. Springer Berlin, Heidelberg
    31. Pátek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of / Corynebacterium glutamicum. J Biotechnol 104(1-):311-23 CrossRef
    32. Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of / Corynebacterium glutamicum for l -serine production. Appl Environ Microbiol 71(11):7139-144 CrossRef
    33. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027-032 CrossRef
    34. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in / Escherichia coli. Metab Eng 9(2):193-07 CrossRef
    35. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6(2):242-51 CrossRef
    36. Ravasi P, Peiru S, Gramajo H, Menzella HG (2012) Design and testing of a synthetic biology framework for genetic engineering of / Corynebacterium glutamicum. Microb Cell Fact 11(1):1-1 CrossRef
    37. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940-43 CrossRef
    38. Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in / Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85(1):105-15 CrossRef
    39. Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5 CrossRef
    40. Smith KM, Cho K-M, Liao JC (2010) Engineering / Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87(3):1045-055 CrossRef
    41. Smolke CD, Tyo KEJ (2012) Synthetic biology: emerging methodologies to catalyze the metabolic engineering design cycle. Metab Eng 14(3):187-88 CrossRef
    42. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in / Escherichia coli. PLoS One 4(2):e4489 CrossRef
    43. Van der Rest M, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of / Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52(4):541-45 CrossRef
    44. Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of / Escherichia coli and / Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9(3):268-74 CrossRef
    45. Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with / Corynebacterium glutamicum. Microb Biotechnol 6(2):87-02 CrossRef
    46. Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013) Isolation of fully synthetic promoters for high-level gene expression in / Corynebacterium glutamicum. Biotechnol Bioeng 110(11):2959-969 CrossRef
  • 作者单位:Min-Kyoung Kang (1)
    Jungseok Lee (1) (2)
    Youngsoon Um (1) (4)
    Taek Soon Lee (5) (6)
    Michael Bott (7)
    Si Jae Park (8)
    Han Min Woo (1) (3) (4)

    1. Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea
    2. Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-701, Republic of Korea
    4. Department of Clean Energy and Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea
    5. Joint BioEnergy Institute, Emeryville, CA, 94608, USA
    6. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
    7. Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany
    8. Department of Environmental Engineering and Energy, Myongji University, San 38-2, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggido, 449-728, Republic of Korea
    3. Green School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-701, Republic of Korea
  • ISSN:1432-0614
文摘
Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11?±-.004?h? and a xylose uptake rate of 3.35?mmol/gDW/h when 1?% xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700