Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum
详细信息    查看全文
  • 作者:Min-Kyoung Kang ; Jin-Hee Eom ; Yunje Kim ; Youngsoon Um ; Han Min Woo
  • 关键词:Corynebacterium Glutamicum ; Metabolic Engineering ; Monoterpene ; Pinene ; Toxicity
  • 刊名:Biotechnology Letters
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:36
  • 期:10
  • 页码:2069-2077
  • 全文大小:765 KB
  • 参考文献:1. Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in / Escherichia coli. Science 330:70-4 CrossRef
    2. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD et al (2013) Metabolic engineering of / Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33-1 CrossRef
    3. Alper H, Jin Y-S, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in / Escherichia coli. Metab Eng 7:155-64 CrossRef
    4. Bohlmann J, Steele CL, Croteau R (1997) Monoterpene synthases from Grand Fir ( / Abies grandis): cDNA isopation, characterization, and functional expression of myrcne synthase,(?-(4s)-limonene synthase, and (?-(1s, 5s)-pinene. J Biol Chem 272:21784-1792 CrossRef
    5. Brennan TC, Turner CD, Kr?mer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in / Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513-522 CrossRef
    6. Burke C, Croteau R (2002) Geranyl diphosphate synthase from / Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405:130-36 CrossRef
    7. Choi HS, Lee SY, Kim TY, Woo HM (2010) In silico identification of gene amplification targets for improvement of lycopene production. Appl Environ Microbiol 76:3097-105 CrossRef
    8. Dusch N, Pühler A, Kalinowski J (1999) Expression of the / Corynebacterium glutamicum / pan D gene encoding l-aspartate-α-decarboxylase leads to pantothenate overproduction in / Escherichia coli. Appl Environ Microbiol 65:1530-539
    9. Eggeling L, Bott M (2010) Handbook of / Corynebacterium glutamicum. CRC Press, Boca Raton, Florida
    10. Foo JL, Leong SS (2013) Directed evolution of an / E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol Biofuels 6:81 CrossRef
    11. Heider SA, Peters-Wendisch P, Wendisch VF (2012) Carotenoid biosynthesis and overproduction in / Corynebacterium glutamicum. BMC Microbiol 12:198 CrossRef
    12. Kalinowski J, Bathe B, Bartels D, Bischoff N et al (2003) The complete / Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5-5 CrossRef
    13. Kang M-K, Lee J, Um Y, Lee TS et al (2014) Synthetic biology platform of CoryneBrick vectors for gene expression in / Corynebacterium glutamicum and its application to xylose utilization. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5714-7
    14. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335-55 CrossRef
    15. Lee TS, Krupa RA, Zhang F, Hajimorad M et al (2011) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:12 CrossRef
    16. Müller T, Str?sser J, Buchinger S, Nolden L et al (2006) Mutation-induced metabolite pool alterations in / Corynebacterium glutamicum: towards the identification of nitrogen control signals. J Biotechnol 126:440-53 CrossRef
    17. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 25:528-32 CrossRef
    18. Phillips MA, Wildung MR, Williams DC, Hyatt DC et al (2003) cDNA isolation, functional expression, and characterization of (+)-α-pinene synthase and (?-α-pinene synthase from loblolly pine ( / Pinus taeda): stereocontrol in pinene biosynthesis. Arch Biochem Biophys 411:267-76 CrossRef
    19. Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619-23 CrossRef
    20. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242-51 CrossRef
    21. Rivas da Silva AC, Lopes PM, Barros de Azevedo MM, Costa DC et al (2012) Biological activities of alpha-pinene and beta-pinene enantiomers. Molecules 17:6305-316 CrossRef
    22. Russo EB (2011) Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 163:1344-364 CrossRef
    23. Sarria S, Wong B, Martín HG, Keasling JD et al (2014) Microbial Synthesis of Pinene. ACS Synth Biol. doi:10.1021/sb4001382
    24. Uribe S, Pena A (1990) Toxicity of allelopathic monoterpene suspensions on yeast dependence on droplet size. J Chem Ecol 16:1399-408 CrossRef
    25. Van der Rest M, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of / Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541-45 CrossRef
    26. Woo HM, Park JB (2014) Recent progress in development of synthetic biology platforms and metabolic engineering of / Corynebacterium glutamicum. J Biotechnol 180:43-1 CrossRef
    27. Yang J, Nie Q, Ren M, Feng H et al (2013) Metabolic engineering of / Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuel 6:60 CrossRef
  • 作者单位:Min-Kyoung Kang (1)
    Jin-Hee Eom (1) (2)
    Yunje Kim (1)
    Youngsoon Um (1) (4)
    Han Min Woo (1) (3) (4)

    1. Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5 Seongbuk-gu, Seoul, 136-791, Republic of Korea
    2. Department of Chemistry, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 136-701, Republic of Korea
    4. Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 305-350, Republic of Korea
    3. Green School, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 136-701, Republic of Korea
  • ISSN:1573-6776
文摘
Pinene is a monoterpenes (C10) that is produced in a genetically-engineered microbial host for its industrial applications in fragrances, flavoring agents, pharmaceuticals, and biofuels. Herein, we have metabolically-engineered Corynebacterium glutamicum, to produce pinene and studied its toxicity in C. glutamicum. Geranyl diphosphate synthases (GPPS) and pinene synthases (PS), obtained from Pinus taeda and Abies grandis, were co-expressed with over-expressed native 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and isopentenyl diphosphate isomerase (Idi) from C. glutamicum using CoryneBrick vector. Most strains expressing PS-GPPSs produced detectable amounts of pinene, but co-expression of DXS and IDI with PS (P. taeda) and GPPS (A. grandis) resulted in 27?μg?±?7 α-pinene g??cell dry weight, which is the first report in C. glutamicum. Further engineering of PS and GPPS in the C. glutamicum strain may increase pinene production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700