Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum
详细信息    查看全文
  • 作者:Kyoungseon Min (1)
    Seil Kim (1)
    Taewoo Yum (1)
    Yunje Kim (1)
    Byoung-In Sang (2)
    Youngsoon Um (1)
  • 关键词:Enzymatic decarboxylation ; Acetoacetate decarboxylase ; Levulinic acid ; 2 ; Butanone
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:97
  • 期:12
  • 页码:5627-5634
  • 全文大小:300KB
  • 参考文献:1. Ahn J-H, Sang B-I, Um Y (2011) Butanol production from thin stillage using / Clostridium pasteurianum. Bioresour Technol 102(7):4934-937 CrossRef
    2. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86-9 CrossRef
    3. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant / Clostridium acetobutylicum. Appl Environ Microbiol 53(12):2854-861
    4. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327(5969):1110-114 CrossRef
    5. Cha JY, Hanna MA (2002) Levulinic acid production based on extrusion and pressurized batch reaction. Ind Crop Prod 16(2):109-18 CrossRef
    6. Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98(7):1448-453 CrossRef
    7. Chen H, Yu B, Jin S (2011) Production of levulinic acid from steam exploded rice straw via solid superacid. Bioresour Technol 102(3):3568-570 CrossRef
    8. Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88(10):3473-480 CrossRef
    9. Fang Q, Hanna MA (2002) Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour Technol 81(3):187-92 CrossRef
    10. Gogerty SD, Bobik AT (2010) Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol 74(24):8004-010 CrossRef
    11. Gong Y, Lin L (2011) Oxidative decarboxylation of levulinic acid by silver(i)/persulfate. Molecules 16(3):2714-725 CrossRef
    12. Gong Y, Lin L, Shi J, Liu S (2010) Oxidative decarboxylation of levulinic acid by cupric oxides. Molecules 15(11):7946-960 CrossRef
    13. Highbarger LA, Gerlt JA, Kenyon GL (1996) Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pKa of active-site lysine 115. Biochemistry 35(1):41-6 CrossRef
    14. Ho MC, Mernetret JF, Tsuruta H, Allen KN (2009) The origin of the electrostatic pertubation in acetoacetate decarboxylase. Nature 459(7245):393-97 CrossRef
    15. Jo JH, Jeon CO, Lee SY, Lee DS, Park JM (2010) Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in / Clostridium tyrobutyricum JM1. Int J Hydrogen Energy 35(3):1065-073 CrossRef
    16. Kim ES, Lee HJ, Bang W-G, Choi I-G, Kim KH (2009) Functional characterization of a bacterial expansin from / Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102(5):1342-353 CrossRef
    17. Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using / Escherichia coli KO11. Bioresour Technol 102(16):7466-469 CrossRef
    18. Kurniawati S, Nicell JA (2007) Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol. Enzyme Microb Technol 41(3):353-61 CrossRef
    19. Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Edit 49(26):4479-483 CrossRef
    20. Lee S-M, Cho MO, Park CH, Chung Y-C, Kim JH, Sang B-I, Um Y (2008) Continuous butanol production using suspended and immobilized / Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuel 22(5):3459-464 CrossRef
    21. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25(4):369-84 CrossRef
    22. Lou Z, Chen X, Tian L, Qiao M, Fan K, He H, Zhang X, Zong B (2010) Preparation and characterization of the chirally modified rapidly quenched skeletal Ni catalyst for enantioselective hydrogenation of butanone to R-(?-2-butanol. J Mole Catal A: Chem 326(1-):113-20 CrossRef
    23. Matiasek MG, Choudhury K, Nemecek-Marshall M, Fall R (2001) Volatile ketone formation in bacteria: release of 3-oxopentanoate by soil / Pseudomonads during growth on heptanoate. Curr Microbiol 42(4):276-81
    24. Mendoza L, Jonstrup M, Hatti-Kaul R, Mattiasson B (2011) Azo dye decolorization by a laccase/mediator system in a membrane reactor: enzyme and mediator reusability. Enzyme Microb Technol 49(5):478-84 CrossRef
    25. Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from / Cerrena unicolor. Dyes Pigm 77(2):295-02 CrossRef
    26. Min K, Ryu J, Yoo Y (2010) Mediator-free glucose/O2 biofuel cell based on a 3-dimensional glucose oxidase/SWNT/polypyrrole composite electrode. Biotechnol Bioprocess Eng 15(3):371-75 CrossRef
    27. Mitchell RJ, Kim J-S, Jeon B-S, Sang B-I (2009) Continuous hydrogen and butyric acid fermentation by immobilized / Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time. Bioresour Technol 100(21):5352-355 CrossRef
    28. Moon C, Lee C, Sang B-I, Um Y (2011) Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by / Clostridium pasteurianum. Bioresour Technol 102(22):10561-0568 CrossRef
    29. Petersen DJ, Bennett GN (1990) Purification of acetoacetate decarboxylase from / Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in / Escherichia coli. Appl Environ Microbiol 56(11):3491-498
    30. Pfromm PH, Amanor-Boadu V, Nelson R, Vadlani P, Madl R (2010) Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or / Clostridium acetobutylicum. Biomass Bioenergy 34(4):515-24 CrossRef
    31. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from / Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzym Microb Technol 39(6):1242-249 CrossRef
    32. Smolander M, Boer H, Valkiainen M, Roozeman R, Bergelin M, Eriksson J-E, Zhang X-C, Koivula A, Viikari L (2008) Development of a printable laccase-based biocathode for fuel cell applications. Enzyme Microb Technol 43(2):93-02 CrossRef
    33. Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633-41 CrossRef
    34. Werpy T, Petersen G (2004) Top value added chemicals from biomass. Department of Energy, Washington, DC, pp 45-8
  • 作者单位:Kyoungseon Min (1)
    Seil Kim (1)
    Taewoo Yum (1)
    Yunje Kim (1)
    Byoung-In Sang (2)
    Youngsoon Um (1)

    1. Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 136-791, South Korea
    2. Department of Chemical Engineering, Hanyang University, Seoul, 133-791, South Korea
  • ISSN:1432-0614
文摘
In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C. 4.1.1.4) from Clostridium acetobutylicum was selected as a biocatalyst for decarboxylation of levulinic acid. The purified recombinant AADC from Escherichia coli successfully converted levulinic acid to 2-butanone with a conversion yield of 8.4-0.3?% depending on the amount of AADC under optimum conditions (30?°C and pH?5.0) despite that acetoacetate, a β-keto-acid, is a natural substrate of AADC. In order to improve the catalytic efficiency, an AADC-mediator system was tested using methyl viologen, methylene blue, azure B, zinc ion, and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediators. Among them, methyl viologen showed the best performance, increasing the conversion yield up to 6.7-fold in comparison to that without methyl viologen. The results in this study are significant in the development of a renewable method for the synthesis of 2-butanone from biomass-derived chemical, levulinic acid, through enzymatic decarboxylation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700