Effect of background parabolic current on characteristics and energetics of internal solitary waves by numerical simulation
详细信息    查看全文
  • 作者:Haibin Lü ; Jieshuo Xie ; Yuan Yao ; Jiexin Xu ; Zhiwu Chen…
  • 关键词:internal solitary waves ; background current ; baroclinic energy ; South China Sea
  • 刊名:Acta Oceanologica Sinica
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:35
  • 期:1
  • 页码:1-10
  • 全文大小:955 KB
  • 参考文献:Apel J R, Ostrovsky L A, Stepanyants Y A, et al. 2006. Internal solitons in the ocean. Technical Report 2006, WHOI-2006-04
    Cai Shuqun, Long Xiaomin, Dong Danpeng, et al. 2008. Background current affects the internal wave structure of the northern South China Sea. Progress in Natural Science, 18(5): 585–589CrossRef
    Chen Zhiwu, Xie Jieshuo, Xu Jiexin, et al. 2013. Energetics of nonlinear internal waves generated by tidal flow over topography. Ocean Modelling, 68: 1–8CrossRef
    Choi W, Camassa R. 1999. Fully nonlinear internal waves in a two-fluid system. J Fluid Mech, 396: 1–36CrossRef
    Dushaw B D, Cornuelle B D, Worcester P F, et al. 1995. Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J Phys Oceanogr, 25(4): 631–647CrossRef
    Holloway P E, Merrifield M A. 1999. Internal tide generation by seamounts, ridges, and islands. J Geophys Res, 104(C11): 25937–25951CrossRef
    Kang D, Fringer O. 2012. Energetics of barotropic and baroclinic tides in the monterey bay area. J Phys Oceanogr, 42(2): 272–290CrossRef
    Lamb K G. 2008. On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. J Fluid Mech, 597: 415–427CrossRef
    Lamb K G. 2010. Energetics of internal solitary waves in a background sheared current. Nonlin Processes Geophys, 17(5): 553–568CrossRef
    Liao Guanghong, Yang Chenghao, Xu Xiaohua, et al. 2012. Effects of mesoscale eddies on the internal solitary wave propagation. Acta Oceanologica Sinica, 31(5): 26–40CrossRef
    Lin Zhenhua, Song Jinbao. 2012. Numerical studies of internal solitary wave generation and evolution by gravity collapse. Journal of Hydrodynamics, Ser B, 24(4): 541–553CrossRef
    Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451–460CrossRef
    Scotti A, Beardsley R, Butman B. 2006. On the interpretation of energy and energy fluxes of nonlinear internal waves: an example from Massachusetts Bay. J Fluid Mech, 561: 103–112CrossRef
    Turkington B, Eydeland A, Wang S. 1991. A computational method for solitary internal waves in a continuously stratified fluid. Stud Appl Math, 85: 93–127CrossRef
    Vlasenko V, Stashchuk N, Hutter K. 2005. Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge, UK: Cambridge University Press, 351CrossRef
    Vlasenko V, Alpers W. 2005. Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank. J Geophys Res, 110: C02019
    Warn-Varnas A, Hawkins J, Lamb K G, et al. 2010. Solitary wave generation dynamics at Luzon strait. Ocean Modelling, 31(1–2): 9–27CrossRef
    Wunsch C. 1975. Internal tides in the ocean. Rev Geophys, 13(1): 167–182CrossRef
    Xie Jieshuo, Chen Zhiwu, Xu Jiexin, et al. 2014. Effect of vertical stratification on characteristics and energy of nonlinear internal solitary waves from a numerical model. Commun Nonlinear Sci Numer Simulat, 19(10): 3539–3555CrossRef
  • 作者单位:Haibin Lü (1) (2) (3)
    Jieshuo Xie (1) (3)
    Yuan Yao (4)
    Jiexin Xu (1)
    Zhiwu Chen (1)
    Yinghui He (1)
    Shuqun Cai (1)

    1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
    2. School of Geodesy & Geomatics Engineering, Huaihai Institute of Technology, Lianyungang, 222005, China
    3. University of Chinese Academy of Sciences, Beijing, 100049, China
    4. Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic Administration, Qinhuangdao, 066002, China
  • 刊物主题:Oceanography; Climatology; Ecology; Engineering Fluid Dynamics; Marine & Freshwater Sciences; Environmental Chemistry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1099
文摘
Based on modifications of the observed background parabolic current in upper layer of the northeastern South China Sea (SCS), the effects of eight kinds of background currents on the characteristics and energy conversion of internal solitary waves (ISWs) are investigated by an Internal Gravity Wave (IGW) model. It is found that, although the background current has little effect on the number of the generated ISWs, it reduces the resulted phase speed of ISW. When the background parabolic current appears with its lower boundary near or above the main thermocline, the ISW amplitude and the depth of the isopycnal undergoing maximum displacement increase; when the background parabolic current curvature is reduced, the ISW amplitude and the ratio of baroclinic to barotropic energy reduce, whilst the phase speed of ISW, the baroclinic energy, and the ratio of baroclinic kinetic energy (KE) to available potential energy (APE) increase; when the lower boundary of background parabolic current extends down to the seabed and the background current curvature is reduced, the ISW amplitude and phase speed decrease, whilst the barotropic kinetic energy, the baroclinic energy and the ratio of KE to APE increase. At a whole depth, when the lower background current curvature is reduced and the upper current curvature is increased, the ISW amplitude, and phase speed, the ratio of baroclinic to barotropic energy, the baroclinic energy, and the ratio of KE to APE all increase. Key words internal solitary waves background current baroclinic energy South China Sea

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700