Hollow Fe3O4@mesoporous carbon core–shell microspheres for efficient sorption of radionuclides
详细信息    查看全文
  • 作者:Shihao Xu ; Yingguo Zhao ; Fangcai Zheng ; Yuanguang Zhang
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:5
  • 页码:2550-2557
  • 全文大小:1,341 KB
  • 参考文献:1.Manos MJ, Kanatzidis MG (2012) Layered Metal Sulfides Capture Uranium from Seawater. J Am Chem Soc 134:16441–16446CrossRef
    2.Fan Q, Li P, Chen Y, Wu W (2011) Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution. J Hazard Mater 192:1851–1859CrossRef
    3.Li J, Guo Z, Zhang S, Wang X (2011) Enrich and seal radionuclides in magnetic agarose microspheres. Chem Eng J 172:892–897CrossRef
    4.Scott TB, Allen GC, Heard PJ, Randell MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69:5639–5646CrossRef
    5.Kanematsu M, Perdrial N, Um W, Chorover J, O’Day PA (2014) Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters. Environ Sci Technol 48:6097–6106CrossRef
    6.Ye M, Lu Z, Hu Y, Zhang Q, Yin Y (2013) Mesoporous titanate-based cation exchanger for efficient removal of metal cations. J Mater Chem A 1:5097–5104CrossRef
    7.Reff O, Wilken RD (1999) Removal of dissolved uranium by nanofiltration. Desalination 122:147–150CrossRef
    8.Jung CH, Lee HY, Moon JK, Won HJ, Shul YG (2011) Electrosorption of uranium ions on activated carbon fibers. J Radioanal Nucl Chem 287:833–839CrossRef
    9.Das N (2012) Remediation of radionuclide pollutants through biosorption-an overview. Clean-Soil Air Water 40:16–23CrossRef
    10.Awual MR, Yaita T, Taguchi T, Shiwaku H, Suzuki S, Okamoto Y (2014) Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J Hazard Mater 278:227–235CrossRef
    11.Wang X, Pei Y, Lu M, Lu X, Du X (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J Mater Sci 50:2113–2121. doi:10.​1007/​s10853-014-8773-3 CrossRef
    12.Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135CrossRef
    13.Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910CrossRef
    14.Chen H, Shao D, Li J, Wang X (2014) The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chem Eng J 254:623–634CrossRef
    15.Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour JM (2013) Graphene oxide for effective radionuclide removal. PCCP 15:2321–2327CrossRef
    16.Li Z, Ren S (2015) Preparation of nitrogen-functionalized mesoporous carbon and its application for removal of copper ions. J Mater Sci 50:4600–4609. doi:10.​1007/​s10853-015-9009-x CrossRef
    17.Zhang Z, Zhou Y, Liu Y, Cao X, Zhou Z, Han B, Liang P, Xiong G (2014) Removal of thorium from aqueous solution by ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 302:9–16CrossRef
    18.Liu Y, Zeng G, Tang L, Cai Y, Pang Y, Zhang V, Yang G, Zhou Y, He X, He Y (2015) Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. J Colloid Interface Sci 448:451–459CrossRef
    19.Baikousi M, Georgiou Y, Daikopoulos C, Bourlinos AB, Filip J, Zboril R, Deligiannakis Y, Karakassides M (2015) Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon 93:636–647CrossRef
    20.Wang H, Chen Q, Chen J, Yu B, Hu X (2011) Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions. Nanoscale 3:4600–4603CrossRef
    21.Wang H, Sun Y, Yu Y, Chen J, Li R, Cheng K, Chen Q (2012) A general route to synthesize water-dispersive noble metal-iron oxide bifunctional hybrid nanoparticles. Dalton Trans 41:346–350CrossRef
    22.Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite–reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986CrossRef
    23.Akin I, Arslan G, Tor A, Ersoz M, Cengeloglu Y (2012) Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. J Hazard Mater 235:62–68CrossRef
    24.Koo HY, Lee HJ, Go HA, Lee YB, Bae TS, Kim JK, Choi WS (2011) Graphene-based multifunctional iron oxide nanosheets with tunable properties. Chem Eur J 17:1214–1219CrossRef
    25.Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283CrossRef
    26.Xie L, Guo J, Zhang Y, Hu Y, You Q, Shi S (2015) Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and effi-cient determination of protocatechuic acid in Syzygium aromatium. Food Chem 178:18–25CrossRef
    27.Xie L, Guo J, Zhang Y, Shi S (2014) Efficient determination of protocatechuicacid in fruit juices by selective and rapid magnetic molecular imprinted solidphase extraction coupled with HPLC. J Agric Food Chem 62:8221–8228CrossRef
    28.Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRef
    29.Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215:208–216CrossRef
    30.Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742CrossRef
    31.Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689CrossRef
    32.Joseph C, Stockmann M, Schmeide K, Sachs S, Brendler V, Bernhard G (2013) Sorption of U(VI) onto opalinus clay: effects of pH and humic acid. Appl Geochem 36:104–107CrossRef
    33.Ilton ES, Wang ZM, Boily JF, Qafoku O, Rosso KM, Smith SC (2012) The effect of pH and time on the extractability and speciation of uranium(VI) sorbed to SiO2. Environ Sci Technol 46:6604–6611CrossRef
    34.Camacho LM, Deng SG, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175:393–398CrossRef
    35.Song W, Wang X, Wang Q, Shao D, Wang X (2015) Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. PCCP 17:398–406CrossRef
  • 作者单位:Shihao Xu (1)
    Yingguo Zhao (1)
    Fangcai Zheng (1)
    Yuanguang Zhang (1)

    1. Anhui Collaborative Innovation Center for Petrochemical New Materials, Anqing Normal University, Anqing, 246011, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Hollow Fe3O4@mesoporous carbon (h-Fe3O4@mC) microspheres have been synthesized using silica nanospheres as the sacrificial matrix. Physiochemical properties, surface morphology, and internal structures of the as-prepared products have been carefully characterized. The synthesized h-Fe3O4@mC microspheres have been applied to adsorb radionuclides from aqueous solutions and can be easily separated by an external magnetic field. Effects of contact time, pH, and initial concentrations on the interaction of h-Fe3O4@mC with U(VI), Eu(III), Co(II), and Sr(II) have been studied. The sorption is strongly dependent on pH and can reach equilibrium within 2 h. Dependence of sorption on pH is relevant to both the surface properties of sorbents and the relative distribution of radionuclides species in solutions. Due to the mesoporous structure, carboxyl-functionalized surface, and low density, h-Fe3O4@mC shows efficient sorption for radionuclides even in acidic solutions. The maximum sorption capacities of U(VI), Eu(III), Co(II), and Sr(II) on h-Fe3O4@mC at pH 3.0 and T = 298 K calculated from the Langmuir model are 0.566, 1.013, 0.860, and 0.733 mmol g−1, respectively. Findings of the present work suggest that h-Fe3O4@mC can serve as a promising candidate for recovery and removal of radionuclides from aqueous solutions in the environmental pollution management.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700