Genetic variations in TP53 binding sites are predictors of clinical outcomes in prostate cancer patients
详细信息    查看全文
  • 作者:Victor C. Lin (1) (2)
    Chao-Yuan Huang (3)
    Yung-Chin Lee (4) (5)
    Chia-Cheng Yu (6) (7) (8)
    Ta-Yuan Chang (9)
    Te-Ling Lu (10)
    Shu-Pin Huang (4) (5)
    Bo-Ying Bao (10) (11)
  • 关键词:Mortality ; Prognosis ; Prostate cancer ; Single nucleotide polymorphism (SNP) ; TP53 ; Transcription factor binding sites
  • 刊名:Archives of Toxicology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:88
  • 期:4
  • 页码:901-911
  • 全文大小:360 KB
  • 参考文献:1. Amundson SA, Myers TG, Fornace AJ Jr (1998) Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17:3287-299 CrossRef
    2. Andriole GL, Crawford ED, Grubb RL 3rd et al (2009) Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360:1310-319 CrossRef
    3. Bao BY, Lin VC, Huang SH et al (2010a) Clinical significance of tumor necrosis factor receptor superfamily member 11b polymorphism in prostate cancer. Ann Surg Oncol 17:1675-681 CrossRef
    4. Bao BY, Pao JB, Lin VC et al (2010b) Individual and cumulative association of prostate cancer susceptibility variants with clinicopathologic characteristics of the disease. Clin Chim Acta 411:1232-237 CrossRef
    5. Bao BY, Pao JB, Huang CN et al (2011) Polymorphisms inside microRNAs and microRNA target sites predict clinical outcomes in prostate cancer patients receiving androgen-deprivation therapy. Clin Cancer Res 17:928-36 CrossRef
    6. Bao BY, Pao JB, Huang CN et al (2012) Significant associations of prostate cancer susceptibility variants with survival in patients treated with androgen-deprivation therapy. Int J Cancer 130:876-84 CrossRef
    7. Brauer PM, Tyner AL (2009) RAKing in AKT: a tumor suppressor function for the intracellular tyrosine kinase FRK. Cell Cycle 8:2728-732 CrossRef
    8. Bulyk ML (2003) Computational prediction of transcription-factor binding site locations. Genome Biol 5:201 CrossRef
    9. Chang GT, Blok LJ, Steenbeek M, Veldscholte J, van Weerden WM, van Steenbrugge GJ, Brinkmann AO (1997) Differentially expressed genes in androgen-dependent and -independent prostate carcinomas. Cancer Res 57:4075-081
    10. Chang CF, Pao JB, Yu CC et al (2013) Common variants in IGF1 pathway genes and clinical outcomes after radical prostatectomy. Ann Surg Oncol 20:2446-452 CrossRef
    11. Dumont P, Leu JI, Della Pietra AC, George DL 3rd, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357-65 CrossRef
    12. Ecke TH, Schlechte HH, Hubsch A, Lenk SV, Schiemenz K, Rudolph BD, Miller K (2007) TP53 mutation in prostate needle biopsies—comparison with patients follow-up. Anticancer Res 27:4143-148
    13. Ferretti V, Poitras C, Bergeron D, Coulombe B, Robert F, Blanchette M (2007) PReMod: a database of genome-wide mammalian cis-regulatory module predictions. Nucl Acids Res 35:D122–D126 CrossRef
    14. Freedland SJ, Sutter ME, Dorey F, Aronson WJ (2003) Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. Prostate-specific antigen. Urology 61:365-69 CrossRef
    15. Howell BW, Gertler FB, Cooper JA (1997) Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J 16:121-32 CrossRef
    16. Huang SP, Huang CY, Wang JS et al (2007) Prognostic significance of p53 and X-ray repair cross-complementing group 1 polymorphisms on prostate-specific antigen recurrence in prostate cancer post radical prostatectomy. Clin Cancer Res 13:6632-638 CrossRef
    17. Huang SP, Huang LC, Ting WC et al (2009) Prognostic significance of prostate cancer susceptibility variants on prostate-specific antigen recurrence after radical prostatectomy. Cancer Epidemiol Biomarkers Prev 18:3068-074 CrossRef
    18. Huang SP, Ting WC, Chen LM et al (2010) Association analysis of Wnt pathway genes on prostate-specific antigen recurrence after radical prostatectomy. Ann Surg Oncol 17:312-22 CrossRef
    19. Huang SP, Lan YH, Lu TL et al (2011) Clinical significance of runt-related transcription factor 1 polymorphism in prostate cancer. BJU Int 107:486-92 CrossRef
    20. Huang CN, Huang SP, Pao JB et al (2012a) Genetic polymorphisms in androgen receptor-binding sites predict survival in prostate cancer patients receiving androgen-deprivation therapy. Ann Oncol 23:707-13 CrossRef
    21. Huang CN, Huang SP, Pao JB et al (2012b) Genetic polymorphisms in oestrogen receptor-binding sites affect clinical outcomes in patients with prostate cancer receiving androgen-deprivation therapy. J Intern Med 271:499-09 CrossRef
    22. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ (2004) The UCSC table browser data retrieval tool. Nucl Acids Res 32:D493–D496 CrossRef
    23. Li MS, Liu JL, Wu Y, Wang P, Teng H (2011) Meta-analysis demonstrates no association between p53 codon 72 polymorphism and prostate cancer risk. Genet Mol Res 10:2924-933 CrossRef
    24. Liu J, Yue P, Artym VV, Mueller SC, Guo W (2009) The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invadopodia formation. Mol Biol Cell 20:3763-771 CrossRef
    25. Mok SC, Chan WY, Wong KK et al (1998) DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene 16:2381-387 CrossRef
    26. Navone NM, Troncoso P, Pisters LL et al (1993) p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85:1657-669 CrossRef
    27. Pao JB, Yang YP, Huang CN et al (2013) Vitamin D receptor gene variants and clinical outcomes after androgen-deprivation therapy for prostate cancer. World J Urol 31:281-87 CrossRef
    28. Roche PJ, Hoare SA, Parker MG (1992) A consensus DNA-binding site for the androgen receptor. Mol Endocrinol 6:2229-235
    29. Ross RW, Oh WK, Xie W et al (2008) Inherited variation in the androgen pathway is associated with the efficacy of androgen-deprivation therapy in men with prostate cancer. J Clin Oncol 26:842-47 CrossRef
    30. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212-36 CrossRef
    31. Stacey SN, Sulem P, Jonasdottir A et al (2011) A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet 43:1098-103 CrossRef
    32. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440-445 CrossRef
    33. Sun T, Lee GS, Oh WK et al (2010) Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a Caucasian population. Clin Cancer Res 16:5244-251 CrossRef
    34. Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The international HapMap project web site. Genome Res 15:1592-593 CrossRef
    35. Tseng CP, Ely BD, Li Y, Pong RC, Hsieh JT (1998) Regulation of rat DOC-2 gene during castration-induced rat ventral prostate degeneration and its growth inhibitory function in human prostatic carcinoma cells. Endocrinology 139:3542-553
    36. Visakorpi T, Kallioniemi AH, Syvanen AC et al (1995) Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 55:342-47
    37. Xu B, Mi YY, Min ZC et al (2010) p53 codon 72 increased biochemical recurrence risk after radical prostatectomy in a southern Chinese population. Urol Int 85:401-05 CrossRef
    38. Yang TP, Beazley C, Montgomery SB et al (2010) Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26:2474-476 CrossRef
    39. Yoon HY, Miura K, Cuthbert EJ, Davis KK, Ahvazi B, Casanova JE, Randazzo PA (2006) ARAP2 effects on the actin cytoskeleton are dependent on Arf6-specific GTPase-activating-protein activity and binding to RhoA-GTP. J Cell Sci 119:4650-666 CrossRef
    40. Yu CC, Huang SP, Lee YC et al (2013a) Molecular markers in sex hormone pathway genes associated with the efficacy of androgen-deprivation therapy for prostate cancer. PLoS ONE 8:e54627 CrossRef
    41. Yu CC, Lin VC, Huang CY et al (2013b) Prognostic significance of cyclin D1 polymorphisms on prostate-specific antigen recurrence after radical prostatectomy. Ann Surg Oncol 20(Suppl 3):492-99
    42. Zeitlinger J, Simon I, Harbison CT, Hannett NM, Volkert TL, Fink GR, Young RA (2003) Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113:395-04 CrossRef
  • 作者单位:Victor C. Lin (1) (2)
    Chao-Yuan Huang (3)
    Yung-Chin Lee (4) (5)
    Chia-Cheng Yu (6) (7) (8)
    Ta-Yuan Chang (9)
    Te-Ling Lu (10)
    Shu-Pin Huang (4) (5)
    Bo-Ying Bao (10) (11)

    1. Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
    2. Department of Nursing, I-Shou University, Kaohsiung, Taiwan
    3. Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
    4. Department of Urology, Kaohsiung Medical University Hospital, 100 Ziyou 1st Road, Kaohsiung, 807, Taiwan
    5. Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
    6. Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
    7. Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
    8. Department of Pharmacy, Tajen University, Pingtung, Taiwan
    9. Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
    10. Department of Pharmacy, China Medical University, 91 Xueshi Road, Taichung, 404, Taiwan
    11. Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
  • ISSN:1432-0738
文摘
Since the tumor protein p53 (TP53), a transcription factor, plays a crucial role in prostate cancer development and progression, we hypothesized that sequence variants in TP53 binding sites might affect clinical outcomes in patients with prostate cancer. We systematically evaluated 41 single nucleotide polymorphisms (SNPs) within genome-wide predicted TP53 binding sites in a cohort of 1,024 prostate cancer patients. The associations of these SNPs with prostate cancer characteristics and clinical outcomes after radical prostatectomy for localized disease and after androgen-deprivation therapy (ADT) for advanced disease were assessed by Kaplan–Meier analysis and Cox regression model. ARAP2 rs1444377 and TRPS1 rs722740 were associated with advanced stage prostate cancer. FRK rs171866 remained as a significant predictor for disease progression; DAB2 rs268091 and EXOC4 rs1149558 remained as significant predictors for prostate cancer-specific mortality (PCSM); and EXOC4 rs1149558 remained as a significant predictor for all-cause mortality after ADT in multivariate models that included clinicopathologic predictors. In addition, the numbers of protective genotypes at DAB2 rs268091 and EXOC4 rs1149558 showed a cumulative effect on PCSM (P for trend?=?0.002). Our results suggested that SNPs within TP53 binding sites might be valuable biomarkers for prostate cancer outcome prediction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700