Anti-tat Hutat2:Fc mediated protection against tat-induced neurotoxicity and HIV-1 replication in human monocyte-derived macrophages
详细信息    查看全文
  • 作者:Wen Kang (1) (2)
    Wayne A Marasco (3)
    Hsin-I Tong (2)
    Mary Margaret Byron (4)
    Chengxiang Wu (2)
    Yingli Shi (2)
    Si Sun (2)
    Yongtao Sun (1)
    Yuanan Lu (2)

    1. Department of Infectious Diseases
    ; Tangdu Hospital ; The Fourth Military Medical University ; 569 Xinsi Road ; Xi鈥檃n ; Shaanxi ; 710038 ; China
    2. Department of Public Health Sciences
    ; John A. Burns School of Medicine ; University of Hawaii ; 1960 East鈥搘est Road ; Honolulu ; HI ; 96822 ; USA
    3. Department of Cancer Immunology and AIDS
    ; Dana-Farber Cancer Institute ; Harvard Medical School ; 50 Brookline Avenue ; Boston ; MA ; 02215 ; USA
    4. Hawaii Center for AIDS
    ; John A. Burns School of Medicine ; University of Hawaii ; 651 Ilalo St. ; BSB ; Suite 231 ; Honolulu ; HI ; 96813 ; USA
  • 关键词:Anti ; Tat antibody ; HIV ; 1 ; HIV ; associated neurocognitive disorders ; Human monocyte ; derived macrophages ; Lentivirus ; Neuroprotection
  • 刊名:Journal of Neuroinflammation
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:2,237 KB
  • 参考文献:1. Clifford, DB, Ances, BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13: pp. 976-986
    2. Antinori, A, Arendt, G, Becker, JT, Brew, BJ, Byrd, DA, Cherner, M, Clifford, DB, Cinque, P, Epstein, LG, Goodkin, K, Gisslen, M, Grant, I, Heaton, RK, Joseph, J, Marder, K, Marra, CM, McArthur, JC, Nunn, M, Price, RW, Pulliam, L, Robertson, KR, Sacktor, N, Valcour, V, Wojna, VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69: pp. 1789-1799
    3. Heaton, RK, Clifford, DB, Franklin, DR, Woods, SP, Ake, C, Vaida, F, Ellis, RJ, Letendre, SL, Marcotte, TD, Atkinson, JH, Rivera-Mindt, M, Vigil, OR, Taylor, MJ, Collier, AC, Marra, CM, Gelman, BB, McArthur, JC, Morgello, S, Simpson, DM, McCutchan, JA, Abramson, I, Gamst, A, Fennema-Notestine, C, Jernigan, TL, Wong, J, Grant, I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75: pp. 2087-2096
    4. Kanmogne, GD, Kuate, CT, Cysique, LA, Fonsah, JY, Eta, S, Doh, R, Njamnshi, DM, Nchindap, E, Franklin, DR, Ellis, RJ, McCutchan, JA, Binam, F, Mbanya, D, Heaton, RK, Njamnshi, AK (2010) HIV-associated neurocognitive disorders in sub-Saharan Africa: a pilot study in Cameroon. BMC Neurol 10: pp. 60
    5. Simioni, S, Cavassini, M, Annoni, JM, Rimbault Abraham, A, Bourquin, I, Schiffer, V, Calmy, A, Chave, JP, Giacobini, E, Hirschel, B, Pasquier, RA (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24: pp. 1243-1250
    6. Thomas, SA (2004) Anti-HIV drug distribution to the central nervous system. Curr Pharm Des 10: pp. 1313-1324
    7. Letendre, S, Marquie-Beck, J, Capparelli, E, Best, B, Clifford, D, Collier, AC, Gelman, BB, McArthur, JC, McCutchan, JA, Morgello, S, Simpson, D, Grant, I, Ellis, RJ (2008) Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65: pp. 65-70
    8. Alfahad, TB, Nath, A (2013) Update on HIV-associated neurocognitive disorders. Curr Neurol Neurosci Rep 13: pp. 387
    9. Rao, VR, Ruiz, AP, Prasad, VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11: pp. 13
    10. Ellis, RJ, Letendre, S, Vaida, F, Haubrich, R, Heaton, RK, Sacktor, N, Clifford, DB, Best, BM, May, S, Umlauf, A, Cherner, M, Sanders, C, Ballard, C, Simpson, DM, Jay, C, McCutchan, JA (2014) Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis 58: pp. 1015-1022
    11. Caniglia, EC, Cain, LE, Justice, A, Tate, J, Logan, R, Sabin, C, Winston, A, Sighem, A, Miro, JM, Podzamczer, D, Olson, A, Arribas, JR, Moreno, S, Meyer, L, Romero, J, Dabis, F, Bucher, HC, Wandeler, G, Vourli, G, Skoutelis, A, Lanoy, E, Gasnault, J, Costagliola, D, Hern谩n, MA (2014) Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology 83: pp. 134-141
    12. Nunzio, F, Felix, T, Arhel, NJ, Nisole, S, Charneau, P, Beignon, AS (2012) HIV-derived vectors for therapy and vaccination against HIV. Vaccine 30: pp. 2499-2509
    13. Liang, X, Casimiro, DR, Schleif, WA, Wang, F, Davies, ME, Zhang, ZQ, Fu, TM, Finnefrock, AC, Handt, L, Citron, MP, Heidecker, G, Tang, A, Chen, M, Wilson, KA, Gabryelski, L, McElhaugh, M, Carella, A, Moyer, C, Huang, L, Vitelli, S, Patel, D, Lin, J, Emini, EA, Shiver, JW (2005) Vectored Gag and Env but not Tat show efficacy against simian-human immunodeficiency virus 89.6P challenge in Mamu-A*01-negative rhesus monkeys. J Virol 79: pp. 12321-12331
    14. Someya, K, Xin, KQ, Ami, Y, Izumi, Y, Mizuguchi, H, Ohta, S, Yamamoto, N, Honda, M, Okuda, K (2007) Chimeric adenovirus type 5/35 vector encoding SIV gag and HIV env genes affords protective immunity against the simian/human immunodeficiency virus in monkeys. Virology 367: pp. 390-397
    15. Peters, BS (2001) The basis for HIV immunotherapeutic vaccines. Vaccine 20: pp. 688-705
    16. Ahluwalia, JK, Khan, SZ, Soni, K, Rawat, P, Gupta, A, Hariharan, M, Scaria, V, Lalwani, M, Pillai, B, Mitra, D, Brahmachari, SK (2008) Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 5: pp. 117
    17. Nielsen, MH, Pedersen, FS, Kjems, J (2005) Molecular strategies to inhibit HIV-1 replication. Retrovirology 2: pp. 10
    18. Novina, CD, Murray, MF, Dykxhoorn, DM, Beresford, PJ, Riess, J, Lee, SK, Collman, RG, Lieberman, J, Shankar, P, Sharp, PA (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8: pp. 681-686
    19. Wu, C, Nerurkar, VR, Lu, Y (2013) New insights into inhibition of human immunodeficiency virus type 1 replication through mutant tRNALys3. Retrovirology 10: pp. 112
    20. Abdel-Motal, UM, Sarkis, PT, Han, T, Pudney, J, Anderson, DJ, Zhu, Q, Marasco, WA (2011) Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro. PLoS One 6: pp. e26473
    21. Bouchet, J, Basmaciogullari, SE, Chrobak, P, Stolp, B, Bouchard, N, Fackler, OT, Chames, P, Jolicoeur, P, Benichou, S, Baty, D (2011) Inhibition of the Nef regulatory protein of HIV-1 by a single-domain antibody. Blood 117: pp. 3559-3568
    22. Braun, SE, Taube, R, Zhu, Q, Wong, FE, Murakami, A, Kamau, E, Dwyer, M, Qiu, G, Daigle, J, Carville, A, Johnson, RP, Marasco, WA (2012) In vivo selection of CD4(+) T cells transduced with a gamma-retroviral vector expressing a single-chain intrabody targeting HIV-1 tat. Hum Gene Ther 23: pp. 917-931
    23. Theisen, DM, Pongratz, C, Wiegmann, K, Rivero, F, Krut, O, Kronke, M (2006) Targeting of HIV-1 Tat traffic and function by transduction-competent single chain antibodies. Vaccine 24: pp. 3127-3136
    24. Cao, S, Wu, C, Yang, Y, Sniderhan, LF, Maggirwar, SB, Dewhurst, S, Lu, Y (2011) Lentiviral vector-mediated stable expression of sTNFR-Fc in human macrophage and neuronal cells as a potential therapy for neuroAIDS. J Neuroinflammation 8: pp. 48
    25. Tong, J, Buch, S, Yao, H, Wu, C, Tong, HI, Wang, Y, Lu, Y (2014) Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS. PLoS One 9: pp. e82030
    26. Ensoli, B, Buonaguro, L, Barillari, G, Fiorelli, V, Gendelman, R, Morgan, RA, Wingfield, P, Gallo, RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67: pp. 277-287
    27. Banks, WA, Robinson, SM, Nath, A (2005) Permeability of the blood鈥揵rain barrier to HIV-1 Tat. Exp Neurol 193: pp. 218-227
    28. Buscemi, L, Ramonet, D, Geiger, JD (2007) Human immunodeficiency virus type-1 protein Tat induces tumor necrosis factor-alpha-mediated neurotoxicity. Neurobiol Dis 26: pp. 661-670
    29. Agrawal, L, Louboutin, JP, Reyes, BA, Bockstaele, EJ, Strayer, DS (2012) HIV-1 Tat neurotoxicity: a model of acute and chronic exposure, and neuroprotection by gene delivery of antioxidant enzymes. Neurobiol Dis 45: pp. 657-670
    30. Price, TO, Ercal, N, Nakaoke, R, Banks, WA (2005) HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 1045: pp. 57-63
    31. Magnuson, DS, Knudsen, BE, Geiger, JD, Brownstone, RM, Nath, A (1995) Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol 37: pp. 373-380
    32. Chandra, T, Maier, W, Konig, HG, Hirzel, K, Kogel, D, Schuler, T, Chandra, A, Demirhan, I, Laube, B (2005) Molecular interactions of the type 1 human immunodeficiency virus transregulatory protein Tat with N-methyl-d-aspartate receptor subunits. Neuroscience 134: pp. 145-153
    33. Self, RL, Mulholland, PJ, Nath, A, Harris, BR, Prendergast, MA (2004) The human immunodeficiency virus type-1 transcription factor Tat produces elevations in intracellular Ca2+ that require function of an N-methyl-D-aspartate receptor polyamine-sensitive site. Brain Res 995: pp. 39-45
    34. Kim, TA, Avraham, HK, Koh, YH, Jiang, S, Park, IW, Avraham, S (2003) HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells. J Immunol 170: pp. 2629-2637
    35. Campbell, GR, Watkins, JD, Singh, KK, Loret, EP, Spector, SA (2007) Human immunodeficiency virus type 1 subtype C Tat fails to induce intracellular calcium flux and induces reduced tumor necrosis factor production from monocytes. J Virol 81: pp. 5919-5928
    36. Yang, Y, Wu, J, Lu, Y (2010) Mechanism of HIV-1-TAT induction of interleukin-1beta from human monocytes: Involvement of the phospholipase C/protein kinase C signaling cascade. J Med Virol 82: pp. 735-746
    37. Mhashilkar, AM, LaVecchio, J, Eberhardt, B, Porter-Brooks, J, Boisot, S, Dove, JH, Pumphrey, C, Li, X, Weissmahr, RN, Ring, DB, Ramstedt, U, Marasco, WA (1999) Inhibition of human immunodeficiency virus type 1 replication in vitro in acutely and persistently infected human CD4+ mononuclear cells expressing murine and humanized anti-human immunodeficiency virus type 1 Tat single-chain variable fragment intrabodies. Hum Gene Ther 10: pp. 1453-1467
    38. Poznansky, MC, Vecchio, J, Silva-Arietta, S, Porter-Brooks, J, Brody, K, Olszak, IT, Adams, GB, Ramstedt, U, Marasco, WA, Scadden, DT (1999) Inhibition of human immunodeficiency virus replication and growth advantage of CD4+ T cells and monocytes derived from CD34+ cells transduced with an intracellular antibody directed against human immunodeficiency virus type 1 Tat. Hum Gene Ther 10: pp. 2505-2514
    39. Marasco, WA, LaVecchio, J, Winkler, A (1999) Human anti-HIV-1 tat sFv intrabodies for gene therapy of advanced HIV-1-infection and AIDS. J Immunol Methods 231: pp. 223-238
    40. Zeng, L, Yang, S, Wu, C, Ye, L, Lu, Y (2006) Effective transduction of primary mouse blood- and bone marrow-derived monocytes/macrophages by HIV-based defective lentiviral vectors. J Virol Methods 134: pp. 66-73
    41. Wu, C, Lu, Y (2007) Inclusion of high molecular weight dextran in calcium phosphate-mediated transfection significantly improves gene transfer efficiency. Cell Mol Biol (Noisy-le-grand) 53: pp. 67-74
    42. Wu, C, Lu, Y (2010) High-titre retroviral vector system for efficient gene delivery into human and mouse cells of haematopoietic and lymphocytic lineages. J Gen Virol 91: pp. 1909-1918
    43. Beaudoin, GM, Lee, SH, Singh, D, Yuan, Y, Ng, YG, Reichardt, LF, Arikkath, J (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 7: pp. 1741-1754
    44. Mizuguchi, H, Xu, Z, Ishii-Watabe, A, Uchida, E, Hayakawa, T (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1: pp. 376-382
    45. Mondal, D, Williams, CA, Ali, M, Eilers, M, Agrawal, KC (2005) The HIV-1 Tat protein selectively enhances CXCR4 and inhibits CCR5 expression in megakaryocytic K562 cells. Exp Biol Med (Maywood) 230: pp. 631-644
    46. Agrawal, L, Louboutin, JP, Strayer, DS (2007) Preventing HIV-1 Tat-induced neuronal apoptosis using antioxidant enzymes: mechanistic and therapeutic implications. Virology 363: pp. 462-472
    47. Minagar, A, Shapshak, P, Fujimura, R, Ownby, R, Heyes, M, Eisdorfer, C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202: pp. 13-23
    Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis 56: pp. 1004-1017
    48. Apolloni, A, Hooker, CW, Mak, J, Harrich, D (2003) Human immunodeficiency virus type 1 protease regulation of tat activity is essential for efficient reverse transcription and replication. J Virol 77: pp. 9912-9921
    49. Harrich, D, McMillan, N, Munoz, L, Apolloni, A, Meredith, L (2006) Will diverse Tat interactions lead to novel antiretroviral drug targets?. Curr Drug Targets 7: pp. 1595-1606
    50. Peruzzi, F (2006) The multiple functions of HIV-1 Tat: proliferation versus apoptosis. Front Biosci 11: pp. 708-717
    51. Bertrand, SJ, Aksenova, MV, Mactutus, CF, Booze, RM (2013) HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp Neurol 248: pp. 228-235
    52. Rosen, CA, Sodroski, JG, Goh, WC, Dayton, AI, Lippke, J, Haseltine, WA (1986) Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature 319: pp. 555-559
    53. Barre-Sinoussi, F, Chermann, JC, Rey, F, Nugeyre, MT, Chamaret, S, Gruest, J, Dauguet, C, Axler-Blin, C, Vezinet-Brun, F, Rouzioux, C, Rozenbaum, W, Montagnier, L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: pp. 868-871
    54. Aksenova, MV, Aksenov, MY, Adams, SM, Mactutus, CF, Booze, RM (2009) Neuronal survival and resistance to HIV-1 Tat toxicity in the primary culture of rat fetal neurons. Exp Neurol 215: pp. 253-263
    55. Samikkannu, T, Rao, KV, Gandhi, N, Saxena, SK, Nair, MP (2010) Human immunodeficiency virus type 1 clade B and C Tat differentially induce indoleamine 2,3-dioxygenase and serotonin in immature dendritic cells: Implications for neuroAIDS. J Neurovirol 16: pp. 255-263
    56. Mishra, M, Vetrivel, S, Siddappa, NB, Ranga, U, Seth, P (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63: pp. 366-376
    57. Rao, VR, Sas, AR, Eugenin, EA, Siddappa, NB, Bimonte-Nelson, H, Berman, JW, Ranga, U, Tyor, WR, Prasad, VR (2008) HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci 28: pp. 10010-10016
    58. Li, W, Huang, Y, Reid, R, Steiner, J, Malpica-Llanos, T, Darden, TA, Shankar, SK, Mahadevan, A, Satishchandra, P, Nath, A (2008) NMDA receptor activation by HIV-Tat protein is clade dependent. J Neurosci 28: pp. 12190-12198
    59. Gandhi, N, Saiyed, Z, Thangavel, S, Rodriguez, J, Rao, KV, Nair, MP (2009) Differential effects of HIV type 1 clade B and clade C Tat protein on expression of proinflammatory and antiinflammatory cytokines by primary monocytes. AIDS Res Hum Retroviruses 25: pp. 691-699
    60. Wong, JK, Campbell, GR, Spector, SA (2010) Differential induction of interleukin-10 in monocytes by HIV-1 clade B and clade C Tat proteins. J Biol Chem 285: pp. 18319-18325
    61. Kim, BO, Liu, Y, Ruan, Y, Xu, ZC, Schantz, L, He, JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162: pp. 1693-1707
    62. Carey, AN, Sypek, EI, Singh, HD, Kaufman, MJ, McLaughlin, JP (2012) Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse. Behav Brain Res 229: pp. 48-56
    63. Perez, A, Probert, AW, Wang, KK, Sharmeen, L (2001) Evaluation of HIV-1 Tat induced neurotoxicity in rat cortical cell culture. J Neurovirol 7: pp. 1-10
    64. Carter, PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317: pp. 1261-1269
    65. Czajkowsky, DM, Hu, J, Shao, Z, Pleass, RJ (2012) Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 4: pp. 1015-1028
    66. Suzuki, T, Ishii-Watabe, A, Tada, M, Kobayashi, T, Kanayasu-Toyoda, T, Kawanishi, T, Yamaguchi, T (2010) Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol 184: pp. 1968-1976
    67. Lee, TY, Tjin Tham Sjin, RM, Movahedi, S, Ahmed, B, Pravda, EA, Lo, KM, Gillies, SD, Folkman, J, Javaherian, K (2008) Linking antibody Fc domain to endostatin significantly improves endostatin half-life and efficacy. Clin Cancer Res 14: pp. 1487-1493
    68. Jorgensen, ML, Friis, NA, Just, J, Madsen, P, Petersen, SV, Kristensen, P (2014) Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarentolae. Microb Cell Fact 13: pp. 9
    69. Carter, J, Zhang, J, Dang, TL, Hasegawa, H, Cheng, JD, Gianan, I, O鈥橬eill, JW, Wolfson, M, Siu, S, Qu, S, Meininger, D, Kim, H, Delaney, J, Mehlin, C (2010) Fusion partners can increase the expression of recombinant interleukins via transient transfection in 2936E cells. Protein Sci 19: pp. 357-362
    70. Klein, JS, Gnanapragasam, PN, Galimidi, RP, Foglesong, CP, West, AP, Bjorkman, PJ (2009) Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci U S A 106: pp. 7385-7390
    71. Morgan, JR, LeDoux, JM, Snow, RG, Tompkins, RG, Yarmush, ML (1995) Retrovirus infection: effect of time and target cell number. J Virol 69: pp. 6994-7000
    72. Englund, U, Ericson, C, Rosenblad, C, Mandel, RJ, Trono, D, Wictorin, K, Lundberg, C (2000) The use of a recombinant lentiviral vector for ex vivo gene transfer into the rat CNS. Neuroreport 11: pp. 3973-3977
    73. Gavegnano, C, Kennedy, EM, Kim, B, Schinazi, RF (2012) The impact of macrophage nucleotide pools on HIV-1 reverse transcription, viral replication, and the development of novel antiviral agents. Mol Biol Int 2012: pp. 625983
    74. Diamond, TL, Roshal, M, Jamburuthugoda, VK, Reynolds, HM, Merriam, AR, Lee, KY, Balakrishnan, M, Bambara, RA, Planelles, V, Dewhurst, S, Kim, B (2004) Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem 279: pp. 51545-51553
    75. Jamburuthugoda, VK, Chugh, P, Kim, B (2006) Modification of human immunodeficiency virus type 1 reverse transcriptase to target cells with elevated cellular dNTP concentrations. J Biol Chem 281: pp. 13388-13395
    76. Deglon, N, Tseng, JL, Bensadoun, JC, Zurn, AD, Arsenijevic, Y, Pereira De Almeida, L, Zufferey, R, Trono, D, Aebischer, P (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson鈥檚 disease. Hum Gene Ther 11: pp. 179-190
    77. Lu-Nguyen, NB, Broadstock, M, Schliesser, MG, Bartholomae, C, Kalle, C, Schmidt, M, Y谩帽ez-Mu帽oz, RJ (2014) Transgenic expression of human glial cell line-derived neurotrophic factor (hGDNF) from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson鈥檚 disease. Hum Gene Ther 25: pp. 631-641
    78. Ericson, C, Georgievska, B, Lundberg, C (2005) Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides neuroprotection in a rat model of Parkinson鈥檚 disease. Eur J Neurosci 22: pp. 2755-2764
    79. Dou, H, Grotepas, CB, McMillan, JM, Destache, CJ, Chaubal, M, Werling, J, Kipp, J, Rabinow, B, Gendelman, HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183: pp. 661-669
    80. Ji, KA, Yang, MS, Jeong, HK, Min, KJ, Kang, SH, Jou, I, Joe, EH (2007) Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia 55: pp. 1577-1588
    81. Lebson, L, Nash, K, Kamath, S, Herber, D, Carty, N, Lee, DC, Li, Q, Szekeres, K, Jinwal, U, Koren, J, Dickey, CA, Gottschall, PE, Morgan, D, Gordon, MN (2010) Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci 30: pp. 9651-9658
    82. Wang, H, Sun, J, Goldstein, H (2008) Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood鈥揵rain barrier into the brain and the in vivo sensitivity of the blood鈥揵rain barrier to disruption by lipopolysaccharide. J Virol 82: pp. 7591-7600
    83. Miron, VE, Franklin, RJ (2014) Macrophages and CNS remyelination. J Neurochem 130: pp. 165-171
    84. Prinz, M, Tay, TL, Wolf, Y, Jung, S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol 128: pp. 319-331
    85. McMillan, J, Batrakova, E, Gendelman, HE (2011) Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci 104: pp. 563-601
    86. Biju, K, Zhou, Q, Li, G, Imam, SZ, Roberts, JL, Morgan, WW, Clark, RA, Li, S (2010) Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson鈥檚 disease. Mol Ther 18: pp. 1536-1544
    87. Ensoli, B, Cafaro, A (2000) Control of viral replication and disease onset in cynomolgus monkeys by HIV-1 TAT vaccine. J Biol Regul Homeost Agents 14: pp. 22-26
    88. Re, MC, Gibellini, D, Furlini, G, Vignoli, M, Vitone, F, Bon, I, Placa, M (2001) Relationships between the presence of anti-Tat antibody, DNA and RNA viral load. New Microbiol 24: pp. 207-215
    89. Richardson, MW, Mirchandani, J, Duong, J, Grimaldo, S, Kocieda, V, Hendel, H, Khalili, K, Zagury, JF, Rappaport, J (2003) Antibodies to Tat and Vpr in the GRIV cohort: differential association with maintenance of long-term non-progression status in HIV-1 infection. Biomed Pharmacother 57: pp. 4-14
    90. Palfi, S, Gurruchaga, JM, Ralph, GS, Lepetit, H, Lavisse, S, Buttery, PC, Watts, C, Miskin, J, Kelleher, M, Deeley, S, Iwamuro, H, Lefaucheur, JP, Thiriez, C, Fenelon, G, Lucas, C, Brugi猫res, P, Gabriel, I, Abhay, K, Drouot, X, Tani, N, Kas, A, Ghaleh, B, Corvoisier, P, Dolphin, P, Breen, DP, Mason, S, Guzman, NV, Mazarakis, ND, Radcliffe, PA, Harrop, R (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson鈥檚 disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383: pp. 1138-1146
    91. Sierra-Filardi, E, Nieto, C, Dominguez-Soto, A, Barroso, R, Sanchez-Mateos, P, Puig-Kroger, A, Lopez-Bravo, M, Joven, J, Ardavin, C, Rodriguez-Fernandez, JL, S谩nchez-Torres, C, Mellado, M, Corb铆, AL (2014) CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol 192: pp. 3858-3867
    92. Jaguin, M, Houlbert, N, Fardel, O, Lecureur, V (2013) Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 281: pp. 51-61
    93. Biswas, SK, Mantovani, A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11: pp. 889-896
    94. Cassol, E, Cassetta, L, Alfano, M, Poli, G (2010) Macrophage polarization and HIV-1 infection. J Leukoc Biol 87: pp. 599-608
    95. Mantovani, A, Sica, A, Sozzani, S, Allavena, P, Vecchi, A, Locati, M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25: pp. 677-686
    96. Grant, RS, Naif, H, Thuruthyil, SJ, Nasr, N, Littlejohn, T, Takikawa, O, Kapoor, V (2000) Induction of indolamine 2,3-dioxygenase in primary human macrophages by human immunodeficiency virus type 1 is strain dependent. J Virol 74: pp. 4110-4115
    97. Afkhami-Goli, A, Liu, SH, Zhu, Y, Antony, JM, Arab, H, Power, C (2009) Dual lentivirus infection potentiates neuroinflammation and neurodegeneration: viral copassage enhances neurovirulence. J Neurovirol 15: pp. 139-152
    98. Boasso, A, Vaccari, M, Hryniewicz, A, Fuchs, D, Nacsa, J, Cecchinato, V, Andersson, J, Franchini, G, Shearer, GM, Chougnet, C (2007) Regulatory T-cell markers, indoleamine 2,3-dioxygenase, and virus levels in spleen and gut during progressive simian immunodeficiency virus infection. J Virol 81: pp. 11593-11603
    99. Maneglier, B, Malleret, B, Guillemin, GJ, Spreux-Varoquaux, O, Devillier, P, Rogez-Kreuz, C, Porcheray, F, Therond, P, Dormont, D, Clayette, P (2009) Modulation of indoleamine-2,3-dioxygenase expression and activity by HIV-1 in human macrophages. Fundam Clin Pharmacol 23: pp. 573-581
    100. Fu, X, Lawson, MA, Kelley, KW, Dantzer, R (2011) HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner. J Neuroinflammation 8: pp. 88
    101. Samikkannu, T, Saiyed, ZM, Rao, KV, Babu, DK, Rodriguez, JW, Papuashvili, MN, Nair, MP (2009) Differential regulation of indoleamine-2,3-dioxygenase (IDO) by HIV type 1 clade B and C Tat protein. AIDS Res Hum Retroviruses 25: pp. 329-335
    102. Potula, R, Poluektova, L, Knipe, B, Chrastil, J, Heilman, D, Dou, H, Takikawa, O, Munn, DH, Gendelman, HE, Persidsky, Y (2005) Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood 106: pp. 2382-2390
    103. Sei, S, Saito, K, Stewart, SK, Crowley, JS, Brouwers, P, Kleiner, DE, Katz, DA, Pizzo, PA, Heyes, MP (1995) Increased human immunodeficiency virus (HIV) type 1 DNA content and quinolinic acid concentration in brain tissues from patients with HIV encephalopathy. J Infect Dis 172: pp. 638-647
    104. Sardar, AM, Reynolds, GP (1995) Frontal cortex indoleamine-2,3-dioxygenase activity is increased in HIV-1-associated dementia. Neurosci Lett 187: pp. 9-12
    105. Hryniewicz, A, Boasso, A, Edghill-Smith, Y, Vaccari, M, Fuchs, D, Venzon, D, Nacsa, J, Betts, MR, Tsai, WP, Heraud, JM, Beer, B, Blanset, D, Chougnet, C, Lowy, I, Shearer, GM, Franchini, G (2006) CTLA-4 blockade decreases TGF-beta, IDO, and viral RNA expression in tissues of SIVmac251-infected macaques. Blood 108: pp. 3834-3842
    106. Suh, HS, Zhao, ML, Rivieccio, M, Choi, S, Connolly, E, Zhao, Y, Takikawa, O, Brosnan, CF, Lee, SC (2007) Astrocyte indoleamine 2,3-dioxygenase is induced by the TLR3 ligand poly(I:C): mechanism of induction and role in antiviral response. J Virol 81: pp. 9838-9850
    107. Cassetta, L, Kajaste-Rudnitski, A, Coradin, T, Saba, E, Della Chiara, G, Barbagallo, M, Graziano, F, Alfano, M, Cassol, E, Vicenzi, E, Poli, G (2013) M1 polarization of human monocyte-derived macrophages restricts pre and postintegration steps of HIV-1 replication. AIDS 27: pp. 1847-1856
  • 刊物主题:Neurosciences; Neurology; Neurobiology; Immunology;
  • 出版者:BioMed Central
  • ISSN:1742-2094
文摘
Background HIV-1 Tat is essential for HIV replication and is also a well-known neurotoxic factor causing HIV-associated neurocognitive disorder (HAND). Currently, combined antiretroviral therapy targeting HIV reverse transcriptase or protease cannot prevent the production of early viral proteins, especially Tat, once HIV infection has been established. HIV-infected macrophages and glial cells in the brain still release Tat into the extracellular space where it can exert direct and indirect neurotoxicity. Therefore, stable production of anti-Tat antibodies in the brain would neutralize HIV-1 Tat and thus provide an effective approach to protect neurons. Methods We constructed a humanized anti-Tat Hutat2:Fc fusion protein with the goal of antagonizing HIV-1 Tat and delivered the gene into cell lines and primary human monocyte-derived macrophages (hMDM) by an HIV-based lentiviral vector. The function of the anti-Tat Hutat2:Fc fusion protein and the potential side effects of lentiviral vector-mediated gene transfer were evaluated in vitro. Results Our study demonstrated that HIV-1-based lentiviral vector-mediated gene transduction resulted in a high-level, stable expression of anti-HIV-1 Tat Hutat2:Fc in human neuronal and monocytic cell lines, as well as in primary hMDM. Hutat2:Fc was detectable in both cells and supernatants and continued to accumulate to high levels within the supernatant. Hutat2:Fc protected mouse cortical neurons against HIV-1 Tat86-induced neurotoxicity. In addition, both secreted Hutat2:Fc and transduced hMDM led to reducing HIV-1BaL viral replication in human macrophages. Moreover, lentiviral vector-based gene introduction did not result in any significant changes in cytomorphology and cell viability. Although the expression of IL8, STAT1, and IDO1 genes was up-regulated in transduced hMDM, such alternation in gene expression did not affect the neuroprotective effect of Hutat2:Fc. Conclusions Our study demonstrated that lentivirus-mediated gene transfer could efficiently deliver the Hutat2:Fc gene into primary hMDM and does not lead to any significant changes in hMDM immune-activation. The neuroprotective and HIV-1 suppressive effects produced by Hutat2:Fc were comparable to that of a full-length anti-Tat antibody. This study provides the foundation and insights for future research on the potential use of Hutat2:Fc as a novel gene therapy approach for HAND through utilizing monocytes/macrophages, which naturally cross the blood-brain barrier, for gene delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700