Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis
详细信息    查看全文
  • 作者:Yuanhong Han (1)
    Yun Kang (2)
    Ivone Torres-Jerez (2)
    Foo Cheung (3) (4)
    Christopher D Town (4)
    Patrick X Zhao (2)
    Michael K Udvardi (2)
    Maria J Monteros (1)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:4118KB
  • 参考文献:1. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, / et al.: Genome sequencing in microfabricated high-density picolitre reactors. / Nature 2005, 437:376鈥?80.
    2. Barbazuk WB, Schnable PS: SNP discovery by transcriptome pyrosequencing. / Methods Mol Biol 2011, 729:225鈥?46. CrossRef
    3. Barbazuk WB, Scott JE, Hsin DC, Li L, Patrick SS: SNP discovery via 454 transcriptome sequencing. / Plant J 2007, 51:910鈥?18. CrossRef
    4. Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ: Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. / Plant Biotechnol J 2009, 7:347鈥?54. CrossRef
    5. Novaes E, Drost D, Farmerie W, Pappas G, Grattapaglia D, Sederoff R, Kirst M: High-throughput gene and SNP discovery in Eucalyptus grandis , an uncharacterized genome. / BMC Genomics 2008, 9:312. CrossRef
    6. Cheung F, Haas B, Goldberg S, May G, Xiao Y, Town C: Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. / BMC Genomics 2006, 7:272. CrossRef
    7. Young ND, Udvardi M: Translating Medicago truncatula genomics to crop legumes. / Curr Opin Plant Biol 2009, 12:193鈥?01. CrossRef
    8. Cannon SB, May GD, Jackson SA: Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. / Plant Physiol 2009, 151:970鈥?77. CrossRef
    9. Kwok PY: Methods for genotyping single nucleotide polymorphisms. / Annu Rev Genomics Hum Genet 2001, 2:235鈥?58. CrossRef
    10. Ganal MW, Altmann T, R枚der MS: SNP identification in crop plants. / Curr Opin Plant Biol 2009, 12:211鈥?17. CrossRef
    11. Walker DR, Monteros MJ, Yates JL: Chapter 6: Molecular breeding. In / Genetics, Genomics and Breeding of Crop Plants (Soybean). Edited by: Bilyeu K, Ratnaparkhe M, Kole C. Science Publishers Inc; 2010.
    12. Heffner EL, Sorrells MK, Jannink JL: Genomic selection for crop improvement. / Crop Sci 2009, 49:1鈥?2. CrossRef
    13. Ebert J: Alfalfa's bioenergy appeal. In / Ethanol Producer Magazine. BBI International; 2007:88鈥?4.
    14. McCoy TJ, Bingham ET: Cytology and cytogenetics of alfalfa. In / Alfalfa and alfalfa improvement. / Volume 29. Edited by: Hanson AA, Barnes, DK, Hill, RR. Madison, Wisconsin: American Society of Agronomy; 1988:737鈥?76.
    15. Bingham ET, Groose RW, Woodfield DR, Kidwell KK: Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. / Crop Sci 1994, 34:823鈥?29. CrossRef
    16. Osborn TC, Brouwer D, McCoy TJ: Molecular marker analysis in alfalfa. In / Biotechnology and the improvement of forage legumes. Edited by: McKersie BD, Brown DCW. Guelph, Canada: CAB International; 1997:91鈥?09.
    17. Zhu H, Choi HK, Cook DR, Shoemaker RC: Bridging model and crop legumes through comparative genomics. / Plant Physiol 2005, 137:1189鈥?196. CrossRef
    18. Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR: A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa . / Genetics 2004, 166:1463鈥?502. CrossRef
    19. Diwan N, Bouton JH, Kochert G, Cregan PB: Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa. / Theor Appl Genet 2000, 101:165鈥?72. CrossRef
    20. Eujayl I, Sledge M, Wang L, May G, Chekhovskiy K, Zwonitzer J, Mian M: Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. / Theor Appl Genet 2004, 108:414鈥?22. CrossRef
    21. Flajoulot S, Ronfort J, Baudouin P, Barre P, Huguet T, Huyghe C, Julier B: Genetic diversity among alfalfa ( Medicago sativa ) cultivars coming from a breeding program, using SSR markers. / Theor Appl Genet 2005, 111:1420鈥?429. CrossRef
    22. Cho MH, Ciulla D, Klanderman BJ, Raby BA, Silverman EK: High-resolution melting curve analysis of genomic and whole-genome amplified DNA. / Clin Chem 2008, 54:2055鈥?058. CrossRef
    23. deSilva D, Blackett J: Assay: High-resolution melting and unlabeled probes. / Gen Eng & Biotech News 2007., 27:
    24. SantaLucia J, Allawi HT, Seneviratne PA: Improved nearest-neighbor parameters for predicting DNA duplex stability. / Biochemistry 1996, 35:3555鈥?562. CrossRef
    25. Han Y, Khu D, Monteros M: High-resolution melting analysis for SNP genotyping in diploid and tetraploid alfalfa ( Medicago sativa L.). / Mol Breeding 2011.
    26. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J: TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. / Bioinformatics 2003, 19:651鈥?52. CrossRef
    27. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, / et al.: Genome sequence of the palaeopolyploid soybean. / Nature 463:178鈥?83.
    28. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S: Genome structure of the legume, Lotus japonicus . / DNA Res 2008, 1鈥?3.
    29. Yu J, Buckler ES: Genetic association mapping and genome organization of maize. / Curr Opin Biotechnol 2006, 17:155鈥?60. CrossRef
    30. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL: Arabidopsis map-based cloning in the post-genome era. / Plant Physiol 2002, 129:440鈥?50. CrossRef
    31. Feltus AF, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH: An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. / Genome Res 2004, 14:1812鈥?819. CrossRef
    32. Riday H, Brummer EC: Forage yield heterosis in alfalfa. / Crop Sci 2002, 42:716鈥?23. CrossRef
    33. Robins JG, Luth D, Campbell TA, Bauchan GR, He C, Viands DR, Hansen JL, Brummer EC: Genetic mapping of biomass production in tetraploid alfalfa. / Crop Sci 2007, 47:1鈥?0. CrossRef
    34. Montgomery J, Wittwer CT, Palais R, Zhou L: Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. / Nat Protocols 2007, 2:59鈥?6. CrossRef
    35. Yang SS, Xu WW, Tesfaye M, Lamb JFS, Jung HJG, Samac DA, Vance CP, Gronwald JW: Single-feature polymorphism discovery in the transcriptome of tetraploid alfalfa. / Plant Genome 2009, 2:224鈥?32. CrossRef
    36. Sledge M, Ray I, Jiang G: An expressed sequence tag SSR map of tetraploid alfalfa ( Medicago sativa L.). / Theor Appl Genet 2005, 111:980鈥?92. CrossRef
  • 作者单位:Yuanhong Han (1)
    Yun Kang (2)
    Ivone Torres-Jerez (2)
    Foo Cheung (3) (4)
    Christopher D Town (4)
    Patrick X Zhao (2)
    Michael K Udvardi (2)
    Maria J Monteros (1)

    1. Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
    2. Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
    3. Center for Human Immunology, Autoimmunity and Inflammation, National Institute of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
    4. The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA
文摘
Background Single nucleotide polymorphisms (SNPs) are the most common type of sequence variation among plants and are often functionally important. We describe the use of 454 technology and high resolution melting analysis (HRM) for high throughput SNP discovery in tetraploid alfalfa (Medicago sativa L.), a species with high economic value but limited genomic resources. Results The alfalfa genotypes selected from M. sativa subsp. sativa var. 'Chilean' and M. sativa subsp. falcata var. 'Wisfal', which differ in water stress sensitivity, were used to prepare cDNA from tissue of clonally-propagated plants grown under either well-watered or water-stressed conditions, and then pooled for 454 sequencing. Based on 125.2 Mb of raw sequence, a total of 54,216 unique sequences were obtained including 24,144 tentative consensus (TCs) sequences and 30,072 singletons, ranging from 100 bp to 6,662 bp in length, with an average length of 541 bp. We identified 40,661 candidate SNPs distributed throughout the genome. A sample of candidate SNPs were evaluated and validated using high resolution melting (HRM) analysis. A total of 3,491 TCs harboring 20,270 candidate SNPs were located on the M. truncatula (MT 3.5.1) chromosomes. Gene Ontology assignments indicate that sequences obtained cover a broad range of GO categories. Conclusions We describe an efficient method to identify thousands of SNPs distributed throughout the alfalfa genome covering a broad range of GO categories. Validated SNPs represent valuable molecular marker resources that can be used to enhance marker density in linkage maps, identify potential factors involved in heterosis and genetic variation, and as tools for association mapping and genomic selection in alfalfa.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700