Single-crystal EPR study of three radiation-induced defects (Al–O23?/sup>, Ti3+ and W5+) in stishovite
详细信息    查看全文
  • 作者:Yuanming Pan (1) yuanming.pan@usask.ca
    Mao Mao (1)
    Zucheng Li (1)
    Sanda M. Botis (1)
    Rudolf I. Mashkovtsev (2)
    Anton Shatskiy (23)
  • 关键词:Stishovite – Radiation ; induced defects – Al–O2 3? – Ti3+ – W5+ – Single ; crystal EPR – Hyperfine structures – DFT calculations – Rutile ; type oxides
  • 刊名:Physics and Chemistry of Minerals
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:39
  • 期:8
  • 页码:627-637
  • 全文大小:529.1 KB
  • 参考文献:1. Becke AD (1988) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652
    2. Bill H (1969) Investigation on colour centres in alcaline earth fluorides. Helv Phys Acta 42:771–797
    3. Botis SM, Pan Y (2010) Theoretical modeling of the Al paramagnetic center and its precursors in stishovite. Phys Chem Minerals 37:119–127
    4. Botis SM, Pan Y (2011) Modeling of [AlO4/Li+]+ paramagnetic defects in α-quartz. Can J Phys 89:809–816
    5. Botis S, Nokhrin S, Pan Y, Xu Y, Bonli T, Sopuck V (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1580
    6. Botis SM, Adriaens DA, Pan Y (2009) Ab initio calculations on the O23–Y3 + center in CaF2 and SrF2: its electronic structure and hyperfine constants. Phys Chem Minerals 36:1–7
    7. Brant AT, Yang S, Giles NC, Halliburton LE (2011) Hydrogen donors and Ti3+ ions in reduced TiO2 crystals. J Appl Phys 110:053714
    8. Che M, Tench AJ (1983) Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv Catal 32:1–148
    9. Chester PF (1961) Electron paramagnetic resonance in semiconducting rutile. J Appl Phys 32:2233–2236
    10. Devine RAB, Hubner K (1989) Radiation-induced defects in dense phases of crystalline and amorphous SiO2. Phys Rev B 40:7281–7283
    11. Escudero A, Delevoye L, Langenhorst F (2011) Aluminum incorporation in TiO2 rutile at high pressure: an XRD and high-resolution 27Al NMR study. J Phys Chem C 115:12196–12201
    12. Gensenhues U, Rentschler T (1999) Crystal growth and defect structure of Al3+-doped rutile. J Solid State Chem 143:210–218
    13. Howarth DF, Mombourquette MJ, Weil JA (1997) The magnetic properties of the oxygen-hole aluminum centres in crystalline SiO2. V. 17O-enriched [AlO4/Li]+ and dynamics thereof. Can J Phys 75:99–115
    14. Ikeya M (1993) New applications of electron paramagnetic resonance: ESR dating, dosimetry, and spectroscopy. World Scientific, Singapore
    15. Islam MM, Bredow T, Gerson A (2007) Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles. Phys Rev B 76:045217
    16. Iwaszuk A, Nolan M (2011) Charge compensation in trivalent cation doped bulk rutile TiO2. J Phys: Condens Matter 23:334207
    17. Kerssen J, Volger J (1973) Electron paramagnetic resonance study of slightly reduced rutile (TiO2) crystals. Physica 69:535–561
    18. Kingsbury PI, Ohlsen WD, Johnson OW (1968) Defects in rutile. I. Electron paramagnetic resonance of interstitially doped n-type rutile. Phys Rev 175:1091–1098
    19. Lee C, Yang W, Parr RG (1988) Development of the Cole-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:758–789
    20. Li Z, Pan Y (2011) First-principles study of boron oxygen hole centers in crystals: electronic structures and nuclear hyperfine and quadrupole parameters. Phys Rev B 84:115112
    21. Lunsford JH (1973) ESR of adsorbed oxygen species. Catal Rev 8:135–156
    22. Mackey JH (1963) ERP study of impurity-related color centers in germanium-doped quartz. J Chem Phys 39:74–83
    23. Mackey JH, Boss JW, Wood DE (1970) EPR study of substitutional-aluminum-related hole centers in synthetic α-quartz. J Magn Reson 3:44–54
    24. Madacsi DP, Stapelbroek M, Bossoli RB, Gilliam OR (1982) Superhyperfine interactions and their origins for nd1 ions in rutile structure oxides. J Chem Phys 77:3803–3809
    25. Mao M, Nilges MJ, Pan Y (2010) Radiation-induced defects in apophyllites. II. An O? center and related O?–O? pairs in hydroxylapophyllite. Eur J Mineral 22:89–102
    26. Marfunin AS (1979) Spectroscopy. Luminescence and radiation centers in minerals. Springer, Berlin
    27. McGavin DG, Tennant WC (2009) Higher-order Zeeman and spin terms in the electron paramagnetic resonance spin Hamiltonian; their description in irreducible form using Cartesian, tesseral spherical tensor and Stevens’ operator expressions. J Phys Conden Matter 21:245501
    28. Murphy DM, Chiesa M (2004) EPR of paramagnetic centres on solid surfaces. Electron Paramag Reson 19:279–317
    29. Nilges MJ, Pan Y, Mashkovtsev RI (2008) Radiation-damage-induced defects in quartz. I. Single crystal W-band EPR study of hole-centers in an electron-irradiated quartz. Phys Chem Minerals 32:103–115
    30. Nuttall RHJ, Weil JA (1981) The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2. II. [AlO4/H+]+ and [AlO4/Li+]+. Can J Phys 59:1709–1718
    31. Ogoh K, Yamanaka C, Toyoda S, Ikeya M, Ito E (1994) EPR studies on radiation-induced defects in high pressure phase SiO2. Nuclear Instr Meth Phys Res Sect B: Beam Inter Materials Atoms 91:331–333
    32. Ogoh K, Yamanaka C, Ikeya M (1995) Hyperfine interaction of electron at oxygen vacancy with the nearest and next-nearest Si-29 in high-pressure-phase SiO2—stishovite. J Phys Soc Japan 11:4109–4112
    33. Ogoh K, Yamanaka C, Ikeya M, Ito E (1996a) Two center model for radiation induced aluminum hole center in stishovite. J Phys Chem Solids 57:85–88
    34. Ogoh K, Takaki S, Yamanaka C, Ikeya M, Ito E (1996b) Thermoluminescence and electron spin resonance of atomic hydrogens in coesite and stishovite, high pressure phase of SiO2. J Phys Soc Jap 65:844–847
    35. Pan Y, Mashkovtsev RI, Huang D, Mao M, Shatskiy A (2011) Mechanisms of Cr and H incorporation in stishovite determined by single-crystal EPR spectroscopy and DFT calculations. Am Mineral 96:1331–1342
    36. Shatskiy A, Yamazaki D, Borzdov YM, Matsuzaki T, Litasov KD, Cooray T, Ferot A, Ito E, Katsura T (2010) Stishovite single-crystal growth and application to silicon self-diffusion measurements. Am Mineral 95:135–143
    37. Shirley R, Kraft M, Inderwildi OR (2010) Electronic and optical properties of aluminum-doped anatase and rutile TiO2 from ab initio calculations. Phys Rev B 81:075111
    38. Stapelbroek M, Bartram RH, Gilliam OR, Madacsi DP (1976) ESR investigation of the [Al]0 center in tetragonal GeO2. Phys Rev B 13:1960–1966
    39. Stapelbroek M, Bartram RH, Gilliam OR (1977) Nuclear Zeeman and quadrupole effects of the [Al]0 center in tetragonal GeO2. Phys Rev B 16:4737–4742
    40. Tani A, Yamanaka C, Ikeya M, Ohtaka O, Katsura T (2000) EPR study of a new electron center in synthetic stishovite, a high pressure polymorph of silica. Appl Magn Reson 18:559–564
    41. Walsby CJ, Lees NS, Claridge RFC, Weil JA (2003) The magnetic properties of oxygen-hole aluminum centers in crystalline SiO2. VI. A stable AlO4/Li centre. Can J Phys 81:583–598
    42. Wright PM, Weil JA, Buch T, Anderson JH (1963) Titanium colour centers in rose quartz. Nature 197:246–248
    43. Yamaga M, Yosida T, Hara S, Kodama N (1994) Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in Al2O3. J Appl Phys 75:1111–1117
    44. Yamanaka T, Fukuda T, Tsuchiya J (2002) Bonding character of SiO2 stishovite under high pressures up to 30 GPa. Phys Chem Minerals 29:633–641
    45. Yang S, Halliburton LE (2010) Fluorine donors and Ti3+ ions in TiO2 crystals. Phys Rev B 81:035204
    46. Zwingel D (1976a) The structure of trapped hole centers in Al-doped TiO2. Solid State Commun 20:397–400
    47. Zwingel D (1976b) The electronic structure of trapped hole centres in SnO2. Phys Status Solidi (b) 77:171–180
  • 作者单位:1. Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada2. VS Sobolev Institute of Geology and Mineralogy Petrology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090 Russia3. Department of Earth and Planetary Material Science, Graduate School of Science, Tohoku University, Sendai, 980-8578 Japan
  • ISSN:1432-2021
文摘
Single-crystal electron paramagnetic resonance spectra of electron-irradiated stishovite, measured at temperatures from 3.5 to 294 K, reveal three S = 1/2 radiation-induced defects: an aluminum-associated oxygen hole center and two nd 1 centers (Ti3+ and W5+). The aluminum-associated oxygen hole center, characterized by an orthorhombic site symmetry, coaxial matrices of the electronic Zeeman g, nuclear hyperfine A(27Al) and nuclear quadrupole P(27Al), and the orientation of the g-minimum axis along an O–O direction and those of the unique A(27Al) and P(27Al) axes perpendicular to the O–O direction, is an Al–O2 3? center, with the unpaired electron equally distributed on two equatorial oxygen atoms of a substitutional Al3+ ion at the octahedral Si site. Fully optimized Al-doped structure, theoretical 27Al nuclear hyperfine and quadrupole coupling constants and directions, and 3D spin densities from periodic hybrid density functional theory calculations provide further support for this structural model. Spin Hamiltonian parameters of the Ti3+ and W5+ centers, which are confirmed by their diagnostic 47Ti, 49Ti and 183W hyperfine structures, arise from electron trapping on substitutional Ti4+ and W6+ ions at the octahedral Si site.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700