A comparison of four precipitation distribution models used in daily stochastic models
详细信息    查看全文
  • 作者:Yonghe Liu (1) (5) (6)
    Wanchang Zhang (2)
    Yuehong Shao (3)
    Kexin Zhang (4)
  • 关键词:weather generators ; gamma distribution ; mixed ; exponential distribution ; Markov chain ; Fourier series
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2011
  • 出版时间:July 2011
  • 年:2011
  • 卷:28
  • 期:4
  • 页码:809-820
  • 全文大小:388KB
  • 参考文献:1. Apipattanavis, S., G. Podesta, B. Rajagopalan, and R. W. Katz, 2007: A semiparametric multivariate and multisite weather generator. / Water Resour. Res., 43(11), W11401, doi: 10.1029/2006WR005714. CrossRef
    2. Bardossy, A., 1997: Downscaling from GCMs to local climate through stochastic linkages. / Journal of Environmental Management, 49(1), 7-7. CrossRef
    3. Bates, B. C., S. P. Charles, and J. P. Hughes, 1998: Stochastic downscaling of numerical climate model simulations. / Environmental Modelling & Software, 13(3-), 325-31. CrossRef
    4. Buishand, T. A., 1978: Some remarks on use of daily rainfall models. / J. Hydrol., 36(3-), 295-08. CrossRef
    5. Ceo, R., and R. D. Stern, 1982: Fitting models to daily rainfall data. / J. Appl. Meteor., 21(7), 1024-031. CrossRef
    6. Chapman, T. G., 1997: Stochastic models for daily rainfall in the Western Pacific. / Mathematics and Computers in Simulation, 43(3-), 351-58. CrossRef
    7. Gyasi-Agyei, Y., and S. M. Parvez Bin Mahbub, 2007: A stochastic model for daily rainfall disaggregation into fine time scale for a barge region. / J. Hydrol., 347(3-), 358-70. CrossRef
    8. Hansen, J. W., and T. Mavromatis, 2001: Correcting low-frequency variability bias in stochastic weather generators. / Agriculatural and Forest Meteorology, 109(4), 297-10. CrossRef
    9. Katz, R. W., and M. B. Parlange, 1996: Mixtures of stochastic processes: Application to statistical downscaling. / Climate Research, 7(2), 185-93. CrossRef
    10. Katz, R. W., and M. B. Parlange, 1998: Overdispersion phenomenon in stochastic modeling of precipitation. / J. Climate, 11(4), 591-01. CrossRef
    11. Katz, R. W., and X. G. Zheng, 1999: Mixture model for overdispersion of precipitation. / J. Climate, 12(8), 2528-537. CrossRef
    12. Kou, X. J., J. P. Ge, Y. Wang, and C. J. Zhang, 2007: Validation of the weather generator CLIGEN with daily precipitation data from the Loess Plateau, China. / J. Hydrol., 347(3-), 347-57. CrossRef
    13. Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temprature, and solar-radiation. / Water Resour. Res., 17(1), 182-90. CrossRef
    14. Roldan, J., and D. A. Woolhiser, 1982: Stochastic daily precipitation models.1. A comparison of occurrence processes. / Water Resour. Res., 18(5), 1451-459. CrossRef
    15. Sansom, J., 1998: A hidden Markov model for rainfall using breakpoint data. / J. Climate, 11(1), 42-3. CrossRef
    16. Schwarz, G., 1978: Estimating dimension of a model. / Annals of Statistics, 6(2), 461-64. CrossRef
    17. Wilks, D. S., 1989: Conditioning stochastic daily precipitation models on total monthly precipitation. / Water Resour. Res., 25(6), 1429-439. CrossRef
    18. Wilks, D. S., 1992: Adapting stochastic weather generation algorithms for climate change studies. / Climatic Change, 22(1), 67-4. CrossRef
    19. Wilks, D. S., 1998: Multisite generalization of a daily stochastic precipitation generation model. / J. Hydrol., 210(1-), 178-91. CrossRef
    20. Wilks, D. S., 1999: Interannual variability and extremevalue characteristics of several stochastic daily precipitation models. / Agricultural and Forest Meteorology, 93(3), 153-69. CrossRef
    21. Woolhiser, D. A., and G. Pegram, 1979: Maximum likelihood estimation of Fourier coefficients to describe seasonal-variations of parameters in stochastic daily precipitation models. / J. Appl. Meteor., 18(1), 34-2. CrossRef
    22. Woolhiser, D. A., and J. Roldan, 1982: Stochastic daily precipitation models. 2. A comparison of distributions of amounts. / Water Resour. Res., 18(5), 1461-468. CrossRef
    23. Wu, J. D., and S. L. Wang, 2001: Incorporating stochastic weather generators into studies on climate impacts: Methods and uncertainties. / Adv. Atmos. Sci., 18(5), 937-49.
    24. Zheng, X. G., and R. W. Katz, 2008: Mixture model of generalized chain-dependent processes and its application to simulation of interannual variability of daily rainfall. / J. Hydrol., 349(1-), 191-99. CrossRef
  • 作者单位:Yonghe Liu (1) (5) (6)
    Wanchang Zhang (2)
    Yuehong Shao (3)
    Kexin Zhang (4)

    1. Key Laboratory of Regional Climate-Environment Research for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
    5. Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
    6. Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
    2. Center for Hydrosciences Research, Nanjing University, Nanjing, 210093, China
    3. Applied Hydrometeorological Research Institute, Nanjing University of Information Science and Technology, Nanjing, 210044, China
    4. Linyi Meteorological Bureau, Shandong Province, Linyi, 276004, China
  • ISSN:1861-9533
文摘
Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrological simulations. For modeling daily precipitation in weather generators, first-order Markov chain-dependent exponential, gamma, mixed-exponential, and lognormal distributions can be used. To examine the performance of these four distributions for precipitation simulation, they were fitted to observed data collected at 10 stations in the watershed of Yishu River. The parameters of these models were estimated using a maximum-likelihood technique performed using genetic algorithms. Parameters for each calendar month and the Fourier series describing parameters for the whole year were estimated separately. Bayesian information criterion, simulated monthly mean, maximum daily value, and variance were tested and compared to evaluate the fitness and performance of these models. The results indicate that the lognormal and mixed-exponential distributions give smaller BICs, but their stochastic simulations have overestimation and underestimation respectively, while the gamma and exponential distributions give larger BICs, but their stochastic simulations produced monthly mean precipitation very well. When these distributions were fitted using Fourier series, they all underestimated the above statistics for the months of June, July and August.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700