Inactivation of Microcystis aeruginosa by Electron Beam Irradiation
详细信息    查看全文
  • 作者:Shuyu Liu (1) (2)
    Yueping Zhao (1)
    Wenjun Jiang (3)
    Minghong Wu (1)
    Fang Ma (2)
  • 关键词:Electron beam irradiation ; Microcystis aeruginosa ; Inactivation ; Wastewater treatment ; Harmful algae
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:225
  • 期:9
  • 全文大小:458 KB
  • 参考文献:1. Benson, R. S. (2002). Use of radiation in biomaterials science. / Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 191, 752-57. CrossRef
    2. Chen, J.-J., & Yeh, H.-H. (2005). The mechanisms of potassium permanganate on algae removal. / Water Research, 39, 4420-428. CrossRef
    3. Chow, C. W. K., Drikas, M., House, J., Burch, M. D., & Velzeboer, R. M. A. (1999). The impact of conventional water treatment processes on cells of the cyanobacterium / Microcystis aeruginosa. Water Research, 33, 3253-262. CrossRef
    4. Codd, G. A., Morrison, L. F., & Metcalf, J. S. (2005). Cyanobacterial toxins: risk management for health protection. / Toxicology and Applied Pharmacology, 203, 264-72. CrossRef
    5. Dai, Q., Yan, B., Huang, S., Liu, X., Peng, S., Miranda, M. L. L., Chavez, A. Q., Vergara, B. S., & Olszyk, D. M. (1997). Response of oxidative stress defense systems in rice ( / Oryza sativa) leaves with supplemental UV-B radiation. / Physiologia Plantarum, 101, 301-08. CrossRef
    6. Daly, R. I., Ho, L., & Brookes, J. D. (2007). Effect of chlorination on / Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. / Environmental Science and Technology, 41, 4447-453. CrossRef
    7. Falconer, I. R., Burch, M. D., Steffensen, D. A., Choice, M., & Coverdale, O. R. (1994). Toxicity of the blue-green alga (cyanobacterium) / Microcystis aeruginosa in drinking water to growing pigs, as an animal model for human injury and risk assessment. / Environmental Toxicology and Water Quality, 9, 131-39. CrossRef
    8. Ghassemzadeh, L., Peckham, T. J., Weissbach, T., Luo, X., & Holdcroft, S. (2013). Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer. / Journal of the American Chemical Society, 135, 15923-5932. CrossRef
    9. Han, B., Kyu Kim, J., Kim, Y., Seung Choi, J., & Young Jeong, K. (2012). Operation of industrial-scale electron beam wastewater treatment plant. / Radiation Physics and Chemistry, 81, 1475-478. CrossRef
    10. Han, C., Andersen, J., Pillai, S. C., Fagan, R., Falaras, P., Byrne, J. A., Dunlop, P. S. M., Choi, H., Jiang, W., O’Shea, K. & Dionysiou, D. D. (2013). Chapter green nanotechnology: development of nanomaterials for environmental and energy applications, / Sustainable Nanotechnology and the Environment: Advances and Achievements, American Chemical Society, pp. 201-229.
    11. Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., & Humphries, E. (2008). Eutrophication and harmful algal blooms: a scientific consensus. / Harmful Algae, 8, 3-3. CrossRef
    12. Helfinstine, S. L., Vargas-Aburto, C., Uribe, R. M., & Woolverton, C. J. (2005). Inactivation of Bacillus endospores in envelopes by electron beam irradiation. / Applied and Environmental Microbiology, 71, 7029-032. CrossRef
    13. Ho, L., Onstad, G., Gunten, U. V., Rinck-Pfeiffer, S., Craig, K., & Newcombe, G. (2006). Differences in the chlorine reactivity of four microcystin analogues. / Water Research, 40, 1200-209. CrossRef
    14. Jiang, W., Joens, J. A., Dionysiou, D. D., & O’Shea, K. E. (2013). Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate. / Journal Photochemistry Photobiology A: Chemistry, 262, 7-3. CrossRef
    15. Jin, X.-L., Xia, Q., Wang, X.-Y., Yue, J.-J., & Wei, D.-B. (2011). Inactivation of / Microcystis aeruginosa with contact glow discharge electrolysis. / Plasma Chemistry and Plasma Processing, 31, 697-05. CrossRef
    16. Li, Z., Jiang, W., Yu, M., Zhou, Y., Zhao, Y., Cai, Z., & Zhang, Z. (2006). Effects of LaCl3 on photosynthetic pigment contents and antioxidative enzyme activities in / Chara. Journal of the Chinese Rare Earth Society, 24, 192-95.
    17. Li, P., Zhang, L., Wang, W., Su, J., & Feng, L. (2011). Rapid catalytic microwave method To damage / Microcystis aeruginosa with FeCl3-loaded active carbon. / Environmental Science and Technology, 45, 4521-526. CrossRef
    18. Liang, W., Qu, J., Chen, L., Liu, H., & Lei, P. (2005). Inactivation of / Microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti/RuO2 electrodes. / Environmental Science and Technology, 39, 4633-639. CrossRef
    19. Ma, J., Lin, F., Zhang, R., Yu, W., & Lu, N. (2004). Differential sensitivity of two green algae, / Scenedesmus quadricauda and / Chlorella vulgaris, to 14 pesticide adjuvants. / Ecotoxicology and Environmental Safety, 58, 61-7. CrossRef
    20. Montiel, A., & Welte, B. (1998). Preozonation coupled with flotation filtration: successful removal of algae. / Water Science and Technology, 37, 65-3. CrossRef
    21. Petru?evski, B., Vla?ki, A., Van Breeman, A., & Alaerts, G. (1993). Influence of algal species and cultivation conditions on algal removal in direct filtration. / Water Science and Technology, 27, 211-20. CrossRef
    22. Petrusevski, B., Van Breemen, A., & Alaerts, G. (1996). Effect of permanganate pre-treatment and coagulation with dual coagulants on algae removal in direct filtration. / Aqua, 45, 316-26.
    23. Rodríguez, E., Onstad, G. D., Kull, T. P., Metcalf, J. S., Acero, J. L., & von Gunten, U. (2007). Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. / Water Research, 41, 3381-393. CrossRef
    24. Tobien, T., Cooper, W. J., Nickelsen, M. G., Pernas, E., O’Shea, K. E., & Asmus, K.-D. (2000). Odor control in wastewater treatment: the removal of thioanisole from water—a model case study by pulse radiolysis and electron beam treatment. / Environmental Science and Technology, 34, 1286-291. CrossRef
    25. Vahdat, A., Bahrami, S., Arami, M., & Motahari, A. (2010). Decomposition and decoloration of a direct dye by electron beam radiation. / Radiation Physics and Chemistry, 79, 33-5. CrossRef
    26. Zhang, H., Yang, L., Yu, Z., & Huang, Q. (2014). Inactivation of / Microcystis aeruginosa by DC glow discharge plasma: impacts on cell integrity, pigment contents and microcystins degradation. / Journal of Hazardous Materials, 268, 33-2. CrossRef
    27. Zheng, B., Zheng, Z., Zhang, J., Luo, X., Liu, Q., Wang, J., & Zhao, Y. (2012). The removal of Microcystis aeruginosa in water by gamma-ray irradiation. / Separation and Purification Technology, 85, 165-70. CrossRef
    28. Zheng, S., Jiang, W., Cai, Y., Dionysiou, D. D., & O’Shea, K. E. (2014). Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension. / Catalysis Today, 224, 83-8. CrossRef
  • 作者单位:Shuyu Liu (1) (2)
    Yueping Zhao (1)
    Wenjun Jiang (3)
    Minghong Wu (1)
    Fang Ma (2)

    1. School of Environment and Chemical Engineering, Shanghai University, Shanghai, 201800, People’s Republic of China
    2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People’s Republic of China
    3. Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
  • ISSN:1573-2932
文摘
Microcystis aeruginosa, the most common toxic cyanobacterial bloom, could cause severe environmental problem by producing and releasing lethal cyanobacterial toxins to water body. This study investigated the electron beam irradiation for the inactivation of M. aeruginosa. The treatment process was monitored via the measurement of chlorophyll a concentration, optical density, photosynthesis, and antioxidant enzymes. At low electron beam irradiation dose (1.0?kGy), its performance is not desirable. High dosage of electron beam irradiation (2.0-.0?kGy) can dramatically decrease chlorophyll a concentration, optical density, and photosynthesis rate and affect activities of antioxidant enzymes. The transmission electron microscopy measurement indicates that electron beam irradiation treatment cause significant damages on integrity and morphology. Our results demonstrate that electron beam irradiation is a promising technique for quick and efficient inactivation of M. aeruginosa in aqueous solution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700