Combination of inverted pyramidal nanovoid with silver nanoparticles to obtain further enhancement and its detection for ricin
详细信息    查看全文
  • 作者:Meng Wang (1)
    Bin Wang (1)
    Shixuan Wu (1)
    Tingke Guo (1)
    Haoyu Li (1)
    Zhaoqing Guo (1)
    Junhua Wu (2)
    Peiyuan Jia (2)
    Yuxia Wang (2)
    Xiaoxuan Xu (1)
    Yufang Wang (1)
    Cunzhou Zhang (1)

    1. The MOE Key Laboratory of Weak Light Nonlinear Photonics
    ; School of physics and Teda Applied Physics Institute ; Nankai University ; Tianjin ; 300071 ; China
    2. Institute of Pharmacology and Toxicology
    ; Academy of Military Medical Sciences ; Beijing ; 100850 ; China
  • 关键词:Surface ; enhanced Raman scattering ; Ricin toxin ; Combined substrate ; Finite element method ; 73.20.Mf ; 74.25.nd ; 81.07. ; b
  • 刊名:Nanoscale Research Letters
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:2,519 KB
  • 参考文献:1. Fleischmann, M, Hendra, PJ, McQuillan, AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 26: pp. 163-6 CrossRef
    2. Jeanmaire, DL, Duyne, RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84: pp. 1-20 CrossRef
    3. Nie, S, Remory, S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 275: pp. 1102-6 CrossRef
    4. Kneipp, K, Wang, Y, Kneipp, H, Perelman, LT, Itzkan, I, Dasari, RR (1997) Field single molecule detection using surface-enhanced Raman scattering. Phys Rev Lett. 78: pp. 1667-70 CrossRef
    5. Campion, A, Kambhampati, P (1998) Surface-enhanced Raman scattering. Chem Soc Rev. 27: pp. 241-50 CrossRef
    6. McNay, G, Eustace, D, Smith, WE, Faulds, K, Graham, D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc. 65: pp. 825-37 CrossRef
    7. Hatab, NA, Hsueh, CH, Gaddis, AL, Retterer, ST, Li, J, Eres, G (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 10: pp. 4952-5 CrossRef
    8. Wang, D, Yu, X, Yu, Q (2012) X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering. Nanotechnology. 23: pp. 405201 CrossRef
    9. Steuwe, C, Kaminski, CF, Baumberg, JJ, Mahajan, S (2011) Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett. 11: pp. 5339-43 CrossRef
    10. Hugall, JT, Baumberg, JJ, Mahajan, S (2009) Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces. Appl Phys Lett. 95: pp. 141111 CrossRef
    11. Qi, J, Li, Y, Yang, M, Wu, Q, Chen, Z, Wang, W (2013) Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Res Lett. 8: pp. 1-6 CrossRef
    12. Shen, Y, Zhou, J, Liu, T, Tao, Y, Jiang, R, Liu, M (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun. 4: pp. 2381
    13. Liu, H, Zhang, X, Zhai, T (2013) Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms. Opt Express. 21: pp. 15314-22 CrossRef
    14. Wustholz, KL, Henry, AI, McMahon, JM, Freeman, RG, Valley, N, Piotti, ME (2010) Structure鈥夆垝鈥塧ctivity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc. 132: pp. 10903-10 CrossRef
    15. McLellan, JM, Siekkinen, A, Chen, J, Xia, Y (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett. 427: pp. 122-6 CrossRef
    16. Wang, Q, Song, F, Lin, S, Liu, J, Zhao, H, Zhang, C (2011) Optical properties of silver nanoprisms and their influences on fluorescence of europium complex. Opt Express. 19: pp. 6999-7006 CrossRef
    17. Fang, J, Du, S, Lebedkin, S, Li, Z, Kruk, R, Kappes, M (2010) Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 10: pp. 5006-13 CrossRef
    18. Hastings, SP, Swanglap, P, Qian, Z, Fang, Y, Park, SJ, Link, S (2014) Quadrupole-enhanced Raman scattering. ACS Nano. 8: pp. 9025-34 CrossRef
    19. Zhu, S, Fan, C, Wang, J, He, J, Liang, E, Chao, M (2015) Realization of high sensitive SERS substrates with one-pot fabrication of Ag鈥揊e3O4 nanocomposites. J Colloid Interf Sci. 438: pp. 116-21 CrossRef
    20. He, S, Liu, KK, Su, S, Yan, J, Mao, X, Wang, D (2012) Graphene-based high-efficiency surface-enhanced Raman scattering - active platform for sensitive and multiplex DNA detection. Anal Chem. 84: pp. 4622-7 CrossRef
    21. Cheng, IF, Chen, TY, Lu, RL, Wu, HW (2014) Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy. Nanoscale Res Lett. 9: pp. 1-8 CrossRef
    22. Inscore, F, Shende, C, Sengupta, A, Huang, H, Farquharson, S (2011) Detection of drugs of abuse in saliva by surface-enhanced Raman spectroscopy (SERS). Appl Spectrosc. 65: pp. 1004-8 CrossRef
    23. Wei, WY, White, IM (2013) Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst. 138: pp. 1020-5 CrossRef
    24. Botti, S, Cantarini, L, Palucci, A (2010) Surface-enhanced Raman spectroscopy for trace-level detection of explosives. J Raman Spectrosc. 41: pp. 866-9 CrossRef
    25. Chen, HY, Tran, H, Foo, LY, Sew, TW, Loke, WK (2014) Development and validation of an ELISA kit for the detection of ricin toxins from biological specimens and environmental samples. Anal Bioanal Chem. 406: pp. 5157-69 CrossRef
    26. Perney, N, Baumberg, JJ, Zoorob, ME, Charlton, MDB, Mahnkopf, S, Netti, CM (2006) Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt Express. 14: pp. 847-57 CrossRef
    27. Yang, Y, Matsubara, S, Xiong, L, Hayakawa, T, Nogami, M (2007) Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C. 111: pp. 9095-104 CrossRef
    28. McMahon, JM, Henry, AI, Wustholz, KL, Natan, MJ, Freeman, RG, Duyne, RP (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem. 394: pp. 1819-25 CrossRef
    29. Johnson, PB, Christy, RW (1972) Optical constants of the noble metals. Phys Rev B. 6: pp. 4370 CrossRef
    30. Audi, J, Belson, M, Patel, M, Schier, J, Osterloh, J (2005) Ricin poisoning: a comprehensive review. Jama. 294: pp. 2342-51 CrossRef
    31. Niaura, G, Gaigalas, AK, Vilker, VL (1997) Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes. J Phys Chem B. 101: pp. 9250-62 CrossRef
    32. Xing, RM, An, CX, Liu, J (2001) Preparation of silver nanoparticles via a solvothermal route. Chemical Research. 5: pp. 63-5
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
We have obtained the surface-enhanced Raman scattering substrate by depositing silver nanoparticles on the surface of the inverted pyramidal nanovoid in order to improve the enhance effects. Experimental results showed that the combined substrate exhibited greater enhancement than the nanovoid substrate or nanoparticles. In order to test the SERS activity of the combined substrates, Rh6G and ricin toxin were used as Raman probes. Finite element method was employed to simulate electric field and induced charge distribution of the substrates, which have been used to explore the interaction between nanoparticles and nanovoid as well as mechanism of the great enhancement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700