Size distribution characteristics of carbonaceous aerosol in Xishuangbanna, southwest China: a sign for biomass burning in Asia
详细信息    查看全文
  • 作者:Yuhong Guo
  • 关键词:Organic carbon (OC) ; Elemental carbon (EC) ; Char ; Soot ; Size distribution ; Geometric mean diameter (GMD)
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:188
  • 期:3
  • 全文大小:1,163 KB
  • 参考文献:Cao, G. L., Zhang, X. Y., & Zheng, F. C. (2006). Inventory of black carbon and organic carbon emissions from china. Atmospheric Environment, 40, 6516–6527.
    Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., et al. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics, 5, 3127–3137.
    Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J., Jin, Z. D., Shen, Z. X., Chen, G. C., & Kang, Y. M. (2007). Spatial and seasonal distributions of carbonaceous aerosols over China. Journal Of Geophysical Research, 112, D22S11.CrossRef
    Chen, L.-W. A., Moosmüller, H., Arnott, W. P., Chow, J. C., Watson, J. G., Susott, R. A., Babbitt, R. E., Wold, C. E., Lincoln, E. N., & Hao, W. M. (2007). Emissions from laboratory combustion of wildland fuels: emission factors and source profiles. Environmental Science and Technology, 41, 4317–4325.CrossRef
    Chow, J. C., Watson, J. G., Chen, L.-W. A., Arnott, W. P., Moosmüller, H., & Fung, K. (2004a). Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environmental Science and Technology, 38, 4414–4422.CrossRef
    Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., Kohl, S. D., Engelbrecht, J. P., & Green, M. C. (2004b). Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere, 54, 185–208.CrossRef
    Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. O., Robinson, N. F., Trimble, D., & Kohl, S. (2007). The improve_a temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. Journal of the Air and Waste Management Association, 57, 1014–1023.CrossRef
    Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., & Purcell, R. G. (1993). The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in us air quality studies. Atmospheric Environment. Part A. General Topics, 27, 1185–1201.CrossRef
    Deng, X., Tie, X., Zhou, X., Wu, D., Zhong, L., Tan, H., Li, F., Huang, X., Bi, X., & Deng, T. (2008). Effects of southeast Asia biomass burning on aerosols and ozone concentrations over the pearl river delta (prd) region. Atmospheric Environment, 42, 8493–8501.CrossRef
    Ding, X., Wang, X.-M., & Zheng, M. (2011). The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: observations at a rural site in the central pearl river delta region, south China. Atmospheric Environment, 45, 1303–1311.CrossRef
    Fu, P., Kawamura, K., Kanaya, Y., & Wang, Z. (2010). Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over mt. Tai, central east China. Atmospheric Environment, 44, 4817–4826.CrossRef
    Gelencsér, A., May, B., Simpson, D., Sánchez Ochoa, A., Kasper‐Giebl, A., Puxbaum, H., et al. (2007). Source apportionment of PM2.5 organic aerosol over europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal Of Geophysical Research, 112, D23S04.
    Glaser, B., Dreyer, A., Bock, M., Fiedler, S., Mehring, M., & Heitmann, T. (2005). Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures. Environmental Science and Technology, 39, 3911–3917.CrossRef
    Gustafsson, Ö., Kruså, M., Zencak, Z., Sheesley, R. J., Granat, L., Engström, E., Praveen, P., Rao, P., Leck, C., & Rodhe, H. (2009). Brown clouds over south Asia: biomass or fossil fuel combustion? Science, 323, 495–498.CrossRef
    Han, Y., Cao, J., Chow, J. C., Watson, J. G., An, Z., Jin, Z., Fung, K., & Liu, S. (2007). Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-ec. Chemosphere, 69, 569–574.CrossRef
    Han, Y., Cao, J., Lee, S., Ho, K., & An, Z. (2010). Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China. Atmospheric Chemistry and Physics, 10, 595–607.CrossRef
    Hinds, W. C. (2012). Aerosol technology: Properties, behavior, and measurement of airborne particles. New York: John Wiley and Sons.
    Hou, B., Zhuang, G. S., Zhang, R., Liu, T. N., Guo, Z. G., & Chen, Y. J. (2011). The implication of carbonaceous aerosol to the formation of haze: revealed from the characteristics and sources of oc/ec over a mega-city in China. Journal Of Hazardous Materials, 190, 529–536.CrossRef
    Huntzicker, J. J., Heyerdahl, E. K., McDow, S. R., Rau, J. A., Griest, W. H., & MacDougall, C. S. (1986). Combustion as the principal source of carbonaceous aerosol in the Ohio river valley. Journal of the Air Pollution Control Association, 36, 705–709.CrossRef
    Jacob, D.J., Crawford, J.H., Kleb, M.M., Connors, V.S., Bendura, R.J., Raper, J.L., Sachse, G.W., Gille, J.C., Emmons, L., & Heald, C.L. (2003). Transport and chemical evolution over the pacific (trace‐p) aircraft mission: Design, execution, and first results. Journal Of Geophysical Research, 108
    Jian, Y., & Fu, T. M. (2014). Injection heights of springtime biomass-burning plumes over peninsular southeast Asia and their impacts on long-range pollutant transport. Atmospheric Chemistry and Physics, 14, 3977–3989.CrossRef
    Koelmans, A. A., Jonker, M. T., Cornelissen, G., Bucheli, T. D., Van Noort, P. C., & Gustafsson, Ö. (2006). Black carbon: the reverse of its dark side. Chemosphere, 63, 365–377.CrossRef
    Lelieveld, J. O., Crutzen, P., Ramanathan, V., Andreae, M., Brenninkmeijer, C., Campos, T., Cass, G., Dickerson, R., Fischer, H., & De Gouw, J. (2001). The Indian ocean experiment: widespread air pollution from south and southeast Asia. Science, 291, 1031–1036.CrossRef
    Li, W. F., & Bai, Z. P. (2009). Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. Particuology, 7, 432–437.CrossRef
    Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S., & Kang, K. (2012). Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at gosan abc superstation and their ratios as source signature. Atmospheric Chemistry and Physics, 12, 2007–2024.
    Ma, Y., Weber, R., Lee, Y.N., Orsini, D., Maxwell‐Meier, K., Thornton, D., Bandy, A., Clarke, A., Blake, D., & Sachse, G. (2003). Characteristics and influence of biosmoke on the fine‐particle ionic composition measured in asian outflow during the transport and chemical evolution over the pacific (trace‐p) experiment. Journal Of Geophysical Research, 108, D21, 8816.
    Madhavi Latha, K., & Badarinath, K. (2003). Black carbon aerosols over tropical urban environment—a case study. Atmospheric Research, 69, 125–133.CrossRef
    Nel, A. (2005). Air pollution-related illness: effects of particles. Science, 308, 804–806.CrossRef
    Nguyen, T. H., Brown, R. A., & Ball, W. P. (2004). An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Organic Geochemistry, 35, 217–234.CrossRef
    Pope, C. A., III, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air and Waste Management Association, 56, 709–742.CrossRef
    Rosenfeld, D., Lohmann, U., Raga, G. B., O’Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., & Andreae, M. O. (2008). Flood or drought: how do aerosols affect precipitation? Science, 321, 1309–1313.CrossRef
    Schembari, C., Velchev, K., & Cavalli, F. (2010). Shipborne measurements of air pollution over the western Mediterranean: Contribution of ship emissions to surface concentrations of sulphate and black carbon aerosol, The Internationa l Aerosol Conference. Finland: Helsinki.
    Simoneit, B. R., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P. M., Rogge, W. F., & Didyk, B. M. (2004). Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environmental Science and Technology, 38, 5939–5949.CrossRef
    Stocker, T. F., D. Qin, G.-K. Plattner, L. V. Alexander, S. K. Allen, N. L. Bindoff, F.-M. et al. (2013). Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In T. F. Stockeret al. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Stone, E., Schauer, J., Quraishi, T. A., & Mahmood, A. (2010). Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmospheric Environment, 44, 1062–1070.CrossRef
    Streets, D., Yarber, K., Woo, J.H.&Carmichael, G. (2003). Biomass burning in asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17
    Turpin, B. J., Huntzicker, J. J., Larson, S. M., & Cass, G. R. (1991). Los Angeles summer midday particulate carbon: primary and secondary aerosol. Environmental Science and Technology, 25, 1788–1793.CrossRef
    Wu, D., Bi, X., Deng, X., Li, F., Tan, H., Liao, G., & Huang, J. (2007). Effect of atmospheric haze on the deterioration of visibility over the pearl river delta. Acta Meteorological Sinica (english edition), 21, 215.
    Wu, J., Mei, J. W., Mei, C. X., Guo, W. W., Chang, G. S., QI, X. Y., & Nian, L. H. (2004). Simulation of effects to tropospheric ozone over south east Asia and south china from biomass burning. Environmental Science, 25, 1–6.
    Yu, H., Wu, C., Wu, D., & Yu, J. (2010). Size distributions of elemental carbon and its contribution to light extinction in urban and rural locations in the pearl river delta region, China. Atmospheric Chemistry and Physics, 10, 5107–5119.CrossRef
    Yuan, Z., Yu, J., Lau, A., Louie, P., & Fung, J. (2006). Application of positive matrix factorization in estimating aerosol secondary organic carbon in Hong Kong and its relationship with secondary sulfate. Atmospheric Chemistry and Physics, 6, 25–34.CrossRef
    Zhang, X. Y., Wang, Y. Q., Zhang, X. C., Guo, W., & Gong, S. L. (2008). Carbonaceous aerosol composition over various regions of china during 2006. Journal Of Geophysical Research, 113, D14111.CrossRef
    Zhu, C. S., Cao, J. J., Tsai, C. J., Shen, Z. X., Han, Y. M., Liu, S. X., & Zhao, Z. Z. (2014). Comparison and implications of PM2.5 carbon fractions in different environments. Science Of The Total Environment, 466, 203–209.CrossRef
  • 作者单位:Yuhong Guo (1)

    1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
In 2012, size-segregated aerosol samples were collected in Xishuangbanna, a forest station in southwest China. The concentrations of organic and elemental carbon (OC and EC for short) were quantified with thermal/optical carbon analyzer in the filter samples. OC and EC exhibited similar seasonal patterns, with the highest concentrations in spring, possibly due to the influence of biomass burning in south and southeast Asia. The mass size distributions of OC and EC were bimodal in all the sampling seasons, each with a dominant peak in the fine mode of 0.4–0.7 μm and a coarse peak in the size range of 2.1–4.7 μm. In fine mode, OC and EC showed smaller geometric mean diameters (GMDs) during winter. OC and EC were prone to be more concentrated in fine particles in spring and winter than in summer and autumn. Furthermore, EC was more abundant in fine particles than OC. Good correlations (R 2 = 0.75–0.82) between OC and EC indicated that they had common dominant sources of combustion such as biomass burning and fossil fuel combustion emissions. The daily average OC/EC ratios ranged from 2.1 to 9.1, more elevated OC/EC ratios being found in the winter. Keywords Organic carbon (OC) Elemental carbon (EC) Char Soot Size distribution Geometric mean diameter (GMD)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700