Genome-Scale Identification of Cell-Wall-Related Genes in Switchgrass through Comparative Genomics and Computational Analyses of Transcriptomic Data
详细信息    查看全文
  • 作者:Xin Chen ; Qin Ma ; Xiaolan Rao ; Yuhong Tang ; Yan Wang ; Gaoyang Li…
  • 关键词:Switchgrass ; Plant cell wall ; Homology mapping ; Co ; expression analysis
  • 刊名:BioEnergy Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 页码:172-180
  • 全文大小:1,017 KB
  • 参考文献:1.Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13(3):305–312. doi:10.​1016/​j.​pbi.​2009.​12.​009 CrossRef PubMed
    2.Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol. doi:10.​1016/​j.​biortech.​2014.​07.​022
    3.Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87(3):732–742. doi:10.​1016/​j.​apenergy.​2009.​07.​013 CrossRef
    4.Konda NM, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86. doi:10.​1186/​1754-6834-7-86 PubMedCentral CrossRef PubMed
    5.Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi:10.​1126/​science.​1137016 CrossRef PubMed
    6.Kalluri UC, Yin H, Yang X, Davison BH (2014) Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. Plant Biotechnol J 12(9):1207–1216. doi:10.​1111/​pbi.​12283 PubMedCentral CrossRef PubMed
    7.McCann M, Rose J (2010) Blueprints for building plant cell walls. Plant Physiol 153(2):365. doi:10.​1104/​pp.​ 110.​900324 PubMedCentral CrossRef PubMed
    8.Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105(2):464–469. doi:10.​1073/​pnas.​0704767105 PubMedCentral CrossRef PubMed
    9.Wu M, Wu Y, Wang M (2006) Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment. Biotechnol Prog 22(4):1012–1024. doi:10.​1021/​bp050371p CrossRef PubMed
    10.Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol 53(2):151–165. doi:10.​1111/​j.​1744-7909.​2010.​01015.​x CrossRef PubMed
    11.Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin 4(2):209–226CrossRef
    12.Parrish DJ, Fike JH (2009) Selecting, establishing, and managing switchgrass (Panicum virgatum) for biofuels. Methods Mol Biol 581:27–40. doi:10.​1007/​978-1-60761-214-8_​2 CrossRef PubMed
    13.Zhang JY, Lee YC, Torres-Jerez I, Wang M, Yin Y, Chou WC et al (2013) Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). Plant J 74(1):160–173. doi:10.​1111/​tpj.​12104 CrossRef PubMed
    14.Xi Y, Ge Y, Wang ZY (2009) Genetic transformation of switchgrass. Methods Mol Biol 581:53–59. doi:10.​1007/​978-1-60761-214-8_​4 CrossRef PubMed
    15.Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47(1–2):1–5CrossRef PubMed
    16.Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45(9):1111–1121. doi:10.​1093/​pcp/​pch151 CrossRef PubMed
    17.Penning BW, Hunter CT 3rd, Tayengwa R, Eveland AL, Dugard CK, Olek AT et al (2009) Genetic resources for maize cell wall biology. Plant Physiol 151(4):1703–1728. doi:10.​1104/​pp.​ 109.​136804 PubMedCentral CrossRef PubMed
    18.Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. doi:10.​1126/​science.​1087447 CrossRef PubMed
    19.Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2(10):2366–2382. doi:10.​1038/​nprot.​2007.​324 PubMedCentral CrossRef PubMed
    20.Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(Database issue):D1182–D1187. doi:10.​1093/​nar/​gkt1016 PubMedCentral CrossRef PubMed
    21.Li G, Ma Q, Tang H, Paterson AH, Xu Y (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res 37(15), e101. doi:10.​1093/​nar/​gkp491 PubMedCentral CrossRef PubMed
    22.Jiao X, Sherman BT, da Huang W, Stephens R, Baseler MW, Lane HC et al (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28(13):1805–1806. doi:10.​1093/​bioinformatics/​bts251 PubMedCentral CrossRef PubMed
    23.da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.​1038/​nprot.​2008.​211 CrossRef
    24.Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205. doi:10.​1093/​nar/​gkt1076 PubMedCentral CrossRef PubMed
    25.Shen H, Mazarei M, Hisano H, Escamilla-Trevino L, Fu C, Pu Y et al (2013) A genomics approach to deciphering lignin biosynthesis in switchgrass. Plant Cell 25(11):4342–4361. doi:10.​1105/​tpc.​113.​118828 PubMedCentral CrossRef PubMed
    26.Wang S, Yin Y, Ma Q, Tang X, Hao D, Xu Y (2012) Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biol 12:138. doi:10.​1186/​1471-2229-12-138 PubMedCentral CrossRef PubMed
    27.Zhong R, Ye ZH (2012) MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53(2):368–380. doi:10.​1093/​pcp/​pcr185 CrossRef PubMed
    28.Law JA, Vashisht AA, Wohlschlegel JA, Jacobsen SE (2011) SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. PLoS Genet 7(7), e1002195. doi:10.​1371/​journal.​pgen.​1002195 PubMedCentral CrossRef PubMed
    29.Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9:559. doi:10.​1186/​1471-2105-9-559 CrossRef
  • 作者单位:Xin Chen (1) (2) (3)
    Qin Ma (2) (3) (6)
    Xiaolan Rao (3) (4)
    Yuhong Tang (3) (5)
    Yan Wang (1)
    Gaoyang Li (1) (2)
    Chi Zhang (2)
    Xizeng Mao (2) (7)
    Richard A. Dixon (3) (4)
    Ying Xu (1) (2) (3) (8)

    1. College of Computer Science and Technology, and School of Public Health, Jilin University, Changchun, China
    2. Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
    3. US Department of Energy, BioEnergy Science Center (BESC), Oak Ridge, TN, 37831, USA
    6. Department of Plant Science, South Dakota State University, Brookings, SD, 57006, USA
    4. Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
    5. Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
    7. Institute of Applied Cancer Center, MD Anderson Cancer Center, Houston, TX, 77054, USA
    8. A110 Life Science building, University of Georgia, Athens, GA, 30602, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Large numbers of plant cell-wall (CW)-related genes have been identified or predicted in several plant genomes such as Arabidopsis thaliana, Oryza sativa (rice), and Zea mays (maize), as results of intensive studies of these organisms in the past 2 decades. However, no such gene list has been identified in switchgrass (Panicum virgatum), a key bioenergy crop. Here, we present a computational study for prediction of CW genes in switchgrass using a two-step procedure: (i) homology mapping of all annotated CW genes in the fore-mentioned species to switchgrass, giving rise to a total of 991 genes, and (ii) candidate prediction of CW genes based on switchgrass genes co-expressed with the 991 genes under a large number of experimental conditions. Specifically, our co-expression analyses using the 991 genes as seeds led to the identification of 104 large clusters of co-expressed genes, each referred to as a co-expression module (CEM), covering 830 of the 991 genes plus 823 additional genes that are strongly co-expressed with some of the 104 CEMs. These 1653 genes represent our prediction of CW genes in switchgrass, 112 of which are homologous to predicted CW genes in Arabidopsis. Functional inference of these genes is conducted to derive the possible functional relations among these predicted CW genes. Overall, these data may offer a highly useful information source for cell-wall biologists of switchgrass as well as plants in general.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700