Preparation of MnO2 and MnO2/carbon nanotubes nanocomposites with improved electrochemical performance for lithium ion batteries
详细信息    查看全文
  • 作者:Sisi Luo ; Shan Xu ; Yuhong Zhang ; Jiyan Liu…
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:20
  • 期:7
  • 页码:2045-2053
  • 全文大小:1,101 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
  • 卷排序:20
文摘
Manganese dioxide (MnO2) nanomaterials and manganese dioxide/carbon nanotubes (MnO2/CNTs) nanocomposites were prepared by chemical precipitation and hydrothermal methods with Mn2+ and MnO4− as reactants, respectively. The crystalline structure and morphology of all samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Different crystalline structures and morphologies of MnO2 were prepared by different synthesis methods. Thermogravimetric analysis (TGA) and Elemental analysis (EA) were used to measure the thermal stability and carbon content of MnO2/CNTs nanocomposites. Charge-discharge performance, cyclic voltammetry (CV), large-rate capability performances, and electrochemical impedance spectroscopy (EIS) of the samples were measured as the cathode active materials for lithium ion batteries (LIBs). The synthetic methods and the addition of CNTs have much influence on the electrochemical performance of the products. The δ-MnO2 and δ-MnO2/CNTs prepared by chemical precipitation depict the lower reversible capacities at a current density of 1 C (308 mA g−1). The γ-MnO2 and γ-MnO2/CNTs nanocomposites prepared by hydrothermal method exhibit higher initial capacities of 168 and 254 mAh g−1 and reversible capacities of 85 and 150 mAh g−1, respectively. An enhanced cycling stability for 200 cycles is also achieved. The results show that the addition of CNTs into material can improve the material property at a certain extent.KeywordsMnO2Carbon nanotubeNanocompositesLithium ion battery

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700