De novo assembly and transcriptome characterization: novel insights into the natural resistance mechanisms of Microtus fortis against Schistosoma japonicum
详细信息    查看全文
  • 作者:Yuan Hu (1) (2)
    Yuxin Xu (1) (2)
    Weiyuan Lu (1) (2)
    Zhongying Yuan (1) (2)
    Hong Quan (1) (2)
    Yujuan Shen (1) (2)
    Jianping Cao (1) (2)

    1. National Institute of Parasitic Diseases
    ; Chinese Center for Disease Control and Prevention ; Key Laboratory of Parasite and Vector Biology ; MOH ; Shanghai ; 200025 ; China
    2. WHO Collaborating Center for Malaria
    ; Schistosomiasis and Filariasis ; Shanghai ; 200025 ; China
  • 关键词:Microtus fortis ; Schistosoma japonicum ; Non ; permissive host ; RNA ; seq
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:853 KB
  • 参考文献:1. Gryseels, B, Polman, K, Clerinx, J, Kestens, L (2006) Human schistosomiasis. Lancet 368: pp. 1106-1118 CrossRef
    2. Cai, P, Piao, X, Liu, S, Hou, N, Wang, H, Chen, Q (2013) MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection. PLoS One 8: pp. e67037 CrossRef
    3. Doenhoff, MJ, Pica-Mattocia, L (2006) Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Exp Rev Anti Infect Ther 4: pp. 199-210 CrossRef
    4. Melman, SD, Steinauer, ML, Cunningham, C, Kubatko, LS, Mwangi, IN, Wynn, NB, Mutuku, MW, Karanja, DM, Colley, DG, Black, CL, Secor, WE, Mkoji, GM, Loker, ES (2009) Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3: pp. e504 CrossRef
    5. Lu, BL Identification of Important Rodentia Of China. In: Lu, BL eds. (1982) Identification Manual of Important Medical Animals of China. Publishing House for People鈥檚 Health, Beijing, pp. 907-916
    6. He, YX, Salafsky, B, Ramaswamy, K (2001) Host-parasite relationships of Schistosoma japonicum in mammalian hosts. Trends Parasitol 17: pp. 320-324 CrossRef
    7. Li, FK, Zhu, ZL, Jin, BR (1965) Uninfectibility to Schistosoma japonicum of Microtus fortis. Acta Parasitol Sinica 2: pp. 103-105
    8. Li, H, He, YY, Lin, JJ (2000) The observation for the phenomenon of Microtus Fortis against Schistosoma japonicum. Chin J Vet Parasitol 8: pp. 12-15
    9. Hu, Y, Cao, JP (2010) Research progress on schistosomiasis resistance in the non-permissive murine host. Int J Med Parasit Dis 37: pp. 94-97
    10. Cheng, G, Gong, Q, Gai, N, Xiong, DH, Yu, YJ, Zeng, QR, Hu, WX (2011) Karyopherin alpha 2 (KPNA2) is associated with the natural resistance to Schistosoma japanicum infection in Microtus fortis. Biomed Pharmacother 65: pp. 230-237 CrossRef
    11. Gong, Q, Cheng, G, Qin, ZQ, Xiong, DH, Yu, YJ, Zeng, QR, Hu, WX (2010) Identification of the resistance of a novel molecule heat shock protein 90alpha (HSP90alpha) in Microtus fortis to Schistosoma japonicum infection. Acta Trop 115: pp. 220-226 CrossRef
    12. Peng, J, Gobert, GN, Hong, Y, Jiang, W, Han, H, McManus, DP, Wang, X, Liu, J, Fu, Z, Shi, Y (2011) Apoptosis governs the elimination of Schistosoma japonicum from the non-permissive host Microtus fortis. PLoS One 6: pp. e21109 CrossRef
    13. Jung, KH, Ko, HJ, Mguyen, MX, Kim, SR, Ronald, P, An, G (2012) Genomewide identification and analysis of early heat stress responsive genes in rice. J Plant Biol 55: pp. 458-468 CrossRef
    14. Shao, GY, Feng, J, Bai, X, Zhao, Y, Liu, DH, Gao, J, Xie, JY, Gao, C, Hu, JH (2013) Pathology and gene expression in Microtus fortis infected with Schistosoma japonicum. Acta labor Anim Sci Sin 21: pp. 56-60
    15. Jiang, W, Hong, Y, Peng, J, Fu, Z, Feng, X, Liu, J, Shi, Y, Lin, J (2010) Study on differences in the pathology, T cell subsets and gene expression in susceptible and non-susceptible hosts infected with Schistosoma japonicum. PLoS One 5: pp. e13494 CrossRef
    16. Yao, LX, Lin, JJ, Cai, YM (2003) Advances in research of Microtus fortis against schistosomiasis. Chin J Schisto Control 15: pp. 471-473
    17. Roman, LT, Michael, YG, Darren, AN, Eugene, VK (2000) The COG database: a tool for genome-sc ale analysis of protein functions and evolution. Nucleic Acids Res 28: pp. 33-36 CrossRef
    18. Li, R, Yu, C, Li, Y, Lam, TW, Yiu, SM, Kristiansen, K, Wang, J (2009) SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics 25: pp. 1966-1967 CrossRef
    19. He, Y, Luo, X, Yu, X, Lin, J, Liu, S, Zhang, X, Li, Y (1999) Preliminary study on the levels of natural antibodies against Schistosoma japonicum in Microtus fortis in Dongting lake area. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 17: pp. 132-134
    20. Sun, J, Lin, JJ, Cheng, GF, Li, H, Shi, YJ, Lu, K, Cai, YM, Jiang, HB (2004) Gene difference expression between mice and Microtus fortis infected with Schistosoma japonicum using cDNA microarrays. Acta Sci Nat Univ Pekin 40: pp. 532-537
    21. Kwon, HJ, Kim, HS (2012) Signaling for synergistic activation of natural killer cells. Immune Netw 12: pp. 240-246 CrossRef
    22. Schoenborn, JR, Wilson, CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96: pp. 41-101 CrossRef
    23. Hu, X, Ivashkiv, LB (2009) Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31: pp. 539-550 CrossRef
    24. Schroder, K, Hertzog, PJ, Ravasi, T, Hume, DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: pp. 163-189 CrossRef
    25. Clark, J, Vagenas, P, Panesar, M, Cope, AP (2005) What does tumor necrosis factor excess do to the immune system long term?. Ann Rheum Dis 64 Suppl 4: pp. iv70-iv76
    26. Meurs, L, Labuda, L, Amoah, AS, Mbow, M, Ngoa, UA, Boakye, DA, Mboup, S, Di猫ye, TN, Mountford, AP, Turner, JD, Kremsner, PG, Polman, K, Yazdanbakhsh, M, Adegnika, AA (2011) Enhanced pro-inflammatory cytokine responses following Toll-like-receptor ligation in Schistosoma haematobium-infected schoolchildren from rural Gabon. PLoS One 6: pp. e24393 CrossRef
    27. Magalh茫es, K, Almeida, PE, Atella, G, Maya-Monteiro, CM, Castro-Faria-Neto, H, Pelajo-Machado, M, Lenzi, HL, Bozza, MT, Bozza, PT (2010) Schistosomal-derived lysophosphatidylcholine are involved in eosinophil activation and recruitment through Toll-like receptor-2-dependent mechanisms. J Infect Dis 202: pp. 1369-1379 CrossRef
    28. Venugopal, PG, Nutman, TB, Semnani, RT (2009) Activation and regulation of toll-like receptors (TLRs) by helminth parasites. Immunol Res 43: pp. 252-263 CrossRef
    29. Zanoni, I, Granucci, F (2013) Role of CD14 in host protection against infections and in metabolism regulation. Front Cell Infect Microbiol 3: pp. 32 CrossRef
    30. Prussin, C, Metcalfe, D (2006) 5. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 117: pp. S450-S456 CrossRef
    31. Beswick, EJ, Reyes, VE (2009) CD74 in antigen presentation, inflammation, and cancers of the gastrointestinal tract. World J Gastroenterol 15: pp. 2855-2861 CrossRef
    32. Luo, XS, He, YK, Yu, XL, Lin, JL, Liu, SX, Li, Y, Zhang, XY (1998) A study on the protective immunity against Schistosoma japonicum infection after passively transferring Microtus fortis sera to mice. Chin J Zoonoses 14: pp. 75-76
    33. Jiang, SF, Wei, MX, Lin, JJ, Pan, CE, Qiu, AW, He, YY, Li, H, Shi, YJ (2008) Effect of IgG3 Antibody Purified from Sera of Microtus fortis Against Schistosoma. Chin J Parasitol Parasit Dis 26: pp. 34-36
    34. Zhang, XY, He, YK, Li, Y, Luo, XS, Liu, SX, Yu, XL, Lin, JL, Li, YS (2001) A preliminary observation on the killing of schistosomula of Schistosoma japonicum in vitro by sera and spleen cells of Microtus fortis. Chin J Schisto Control 13: pp. 206-208
    35. Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I, Adiconis, X, Fan, L, Raychowdhury, R, Zeng, Q, Chen, Z, Mauceli, E, Hacohen, N, Gnirke, A, Rhind, N, di Palma, F, Birren, BW, Nusbaum, C, Lindblad-Toh, K, Friedman, N, Regev, A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: pp. 644-652 CrossRef
    36. Conesa, A, G枚tz, S, Garc铆a-G贸mez, JM, Terol, J, Tal贸n, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-3686 CrossRef
    37. Ye, J, Fang, L, Zheng, H, Zhang, Y, Chen, J, Zhang, Z, Wang, J, Li, S, Li, R, Bolund, L, Wang, J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34: pp. W293-W297 CrossRef
    38. Mortazavi, A, Williams, BA, McCue, K, Schaeffer, L, Wold, B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: pp. 621-628 CrossRef
    39. Audic, S, Claverie, JM (1997) The significance of digital gene expression profiles. Genome Res 7: pp. 986-995
    40. de Hoon, MJ, Imoto, S, Nolan, J, Miyano, S (2004) Open source clustering software. Bioinformatics 20: pp. 1453-1454 CrossRef
    41. Saldanha, AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20: pp. 3246-3258 CrossRef
    42. Livak, KJ, Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method. Methods 25: pp. 402-408 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Microtus fortis is a non-permissive host of Schistosoma japonicum. It has natural resistance against schistosomes, although the precise resistance mechanisms remain unclear. The paucity of genetic information for M. fortis limits the use of available immunological methods. Thus, studies based on high-throughput sequencing technologies are required to obtain information about resistance mechanisms against S. japonicum. Results Using Illumina single-end technology, a de novo assembly of the M. fortis transcriptome produced 67,751 unigenes with an average length of 868 nucleotides. Comparisons were made between M. fortis before and after infection with S. japonicum using RNA-seq quantification analysis. The highest number of differentially expressed genes (DEGs) occurred two weeks after infection, and the highest number of down-regulated DEGs occurred three weeks after infection. Simultaneously, the strongest pathological changes in the liver were observed at week two. Gene ontology terms and pathways related to the DEGs revealed that up-regulated transcripts were involved in metabolism, immunity and inflammatory responses. Quantitative real-time PCR analysis showed that patterns of gene expression were consistent with RNA-seq results. Conclusions After infection with S. japonicum, a defensive reaction in M. fortis commenced rapidly, increasing dramatically in the second week, and gradually decreasing three weeks after infection. The obtained M. fortis transcriptome and DEGs profile data demonstrated that natural and adaptive immune responses, play an important role in M. fortis immunity to S. japonicum. These findings provide a better understanding of the natural resistance mechanisms of M. fortis against schistosomes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700