Monolayer g-C3N4 Fluorescent Sensor for Sensitive and Selective Colorimetric Detection of Silver ion from Aqueous Samples
详细信息    查看全文
  • 作者:Yujuan Cao ; Wei Wu ; Song Wang ; Hong Peng ; Xiaogang Hu ; Ying Yu
  • 刊名:Journal of Fluorescence
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:26
  • 期:2
  • 页码:739-744
  • 全文大小:1,048 KB
  • 参考文献:1.Dastafkan K, Khajeh M, Ghaffari-Moghaddam M, Bohlooli M (2015) Silver nanoparticles for separation and preconcentration processes. TrAC-Trends Anal. Chem. 64:118–126CrossRef
    2.Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Koller M (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2:6981–6987CrossRef
    3.Mohammadi SZ, Afzali D, Heshmati Z (2013) Ligand-less in situ surfactant-based solid phase extraction for preconcentration of silver from natural water samples prior to its determination by atomic absorption spectroscopy. Toxico. Environ. Chem. 95:1299–1308CrossRef
    4.Poitras EP, Levine MA, Harrington JM, Essader AS, Fennell TR, Snyder RW, Black SL, Sumner SS, Levine KE (2015) Development of an analytical method for assessment of silver nanoparticle content in biological matrices by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 163:184–192CrossRef PubMed PubMedCentral
    5.Zhang JF, Zhou Y, Yoon J, Kim JS (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416–3429CrossRef PubMed
    6.Singha S, Kim D, Seo H, Cho SW, Ahn KH (2015) Fluorescence sensing systems for gold and silver species. Chem Soc Rev 44:4367–4399CrossRef PubMed
    7.Lee J, Park J, Lee HH, Park H, Kim HI, Kim WJ (2015) Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters. Biosens. Bioelectron. 68:642–647CrossRef PubMed
    8.Afkhami A, Shirzadmehr A, Madrakian T, Bagheri H (2015) New Nano-composite potentiometric sensor composed of graphene nanosheets/thionine/molecular wire for nanomolar detection of silver ion in various real samples. Talanta 131:548–555CrossRef PubMed
    9.Huang K, Xu KL, Tang J, Yang L, Zhou JR, Hou XD, Zheng CB (2015) Room temperature cation exchange reaction in nanocrystals for ultrasensitive speciation analysis of silver ions and silver nanoparticles. Anal Chem 87:6584–6591CrossRef PubMed
    10.Xu WG, Wang X, Cai ZW (2013) Analytical chemistry of the persistent organic pollutants identified in the Stockholm convention: a review. Anal Chim Acta 790:1–13CrossRef PubMed
    11.Vazquez-Gonzalez M, Carrillo-Carrion C (2014) Analytical strategies based on quantum dots for heavy metal ions detection. J. Biomed. Optics 19:101503CrossRef
    12.Li XF, Li M, Yang JH, Li XY, Hu TJ, Wang JS, Sui YR, Wu XT, Kong LN (2014) Synergistic effect of efficient adsorption g-C3N4/ZnO composite for photocatalytic property. J. Phy. Chem. Solids 75:441–446CrossRef
    13.Li YH, Sun YJ, Dong F, Ho WK (2014) Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene. J. Colloid Interf. Sci. 436:29–36CrossRef
    14.Zhang XD, Xie X, Wang H, Zhang JJ, Pan BC, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21CrossRef PubMed
    15.Lee EZ, Jun YS, Hong WH, Thomas A, Jin MM (2010) Cubic mesoporous graphitic carbon(IV) nitride: an all-in-one chemosensor for selective optical sensing of metal ions. Angew Chem Int Ed 49:9706–9710CrossRef
    16.Barman S, Sadhukhan M (2012) Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem 22:21832CrossRef
    17.Lee EZ, Lee SU, Heo NS, Stucky GD, Jun YS, Hong WH (2012) A fluorescent sensor for selective detection of cyanide using mesoporous graphitic carbon (IV) nitride. Chem Commun 48:3942–3944CrossRef
    18.Wang Y, Wang XC, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89CrossRef
    19.Tian JQ, Liu Q, Asiri MA, Al-Youbi AO (2013) Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal Chem 85:5595–5599CrossRef PubMed
    20.Zhang XL, Zheng C, Guo SS, Li J, Yan H, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet–MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434CrossRef PubMed
    21.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef PubMed
    22.Goettmann F, Fischer A, Antonietti M, Thomas A (2006) Chemische synthese von mesoporösen kohlenstoffnitriden in harten templaten und ihre anwendung als metallfreie katalysatoren in friedel-crafts-reaktionen. Angew Chem 118:4579–4583CrossRef
    23.Haris DC (2010) Quantitative chemical analysis (8th). Clancy Marshall, NY
  • 作者单位:Yujuan Cao (1) (2)
    Wei Wu (1)
    Song Wang (1)
    Hong Peng (1)
    Xiaogang Hu (1) (2)
    Ying Yu (1) (2)

    1. School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
    2. Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biophysics and Biomedical Physics
    Biotechnology
    Biochemistry
    Analytical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4994
文摘
Rapid and sensitive detection of heavy-metal ions in natural water environments worldwide is urgently needed because of their severe threats to human health. In the present work, monolayer graphite-like flake C3N4 (g-C3N4) materials were applied as a new fluorescent sensor for the detection of trace silver ion in aqueous solution. The thickness of synthesized g-C3N4 was 0.45 nm and obtained by exfoliating twice with ultrasonic. With the presence of ethylene diamine tetraacetic acid as a screening agent, the highly sensitive sensor reached a low detection limit of 52.3 nmol/L for silver (I) ion and there was no disturbance when silver (I) ion coexisted with other metal ions in water samples. Under the optimal conditions, the monolayer g-C3N4 was successfully used to detect trace silver (I) ion in different environmental water and drinking water samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700