Microfungi associated with withering willow wood in ground contact near Syowa Station, East Antarctica for 40?years
详细信息    查看全文
  • 作者:Dai Hirose (1)
    Yukiko Tanabe (2) (3)
    Masaki Uchida (3)
    Sakae Kudoh (3)
    Takashi Osono (4)
  • 关键词:Continental Antarctica ; Fungi ; Root endophyte ; Salix ; Syowa Station
  • 刊名:Polar Biology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:36
  • 期:6
  • 页码:919-924
  • 全文大小:227KB
  • 参考文献:1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-10
    2. Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol Biochem 38:3057-064 10.1016/j.soilbio.2006.01.016">CrossRef
    3. Arenz BE, Held BW, Jurgens JA, Blanchette RA (2011) Fungal colonization of exotic substrates in Antarctica. Fun Div 49:13-2 10.1007/s13225-010-0079-4">CrossRef
    4. Azmi OR, Seppelt RD (1997) Fungi of the Windmill Islands, continental Antarctica. Effect of temperature, pH and culture media on the growth of selected microfungi. Polar Biol 18:128-34 10.1007/s003000050167">CrossRef
    5. Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL (2004) Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol 70:1328-335 10.1128/AEM.70.3.1328-1335.2004">CrossRef
    6. Blanchette RA, Held BW, Arenz BE, Jurgens JA, Baltes NJ, Duncan SM, Farrell RL (2010) An Antarctic hot spot for fungi as Shackleton’s historic hut on Cape Royds. Microb Ecol 60:29-8 10.1007/s00248-010-9664-z">CrossRef
    7. Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW (2012) Cylindrocarpon root rot: multi-gene analysis reveals novel species within the / Ilyonectria radicicola species complex. Mycol Progr 11:655-88 10.1007/s11557-011-0777-7">CrossRef
    8. Farrell RL, Arenz BE, Duncan SM, Held BW, Jurgens JA, Blanchette RA (2011) Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica. Polar Biol 34:1669-677 10.1007/s00300-011-1060-8">CrossRef
    9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368-76 10.1007/BF01734359">CrossRef
    10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-91 10.2307/2408678">CrossRef
    11. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 21:113-18 10.1111/j.1365-294X.1993.tb00005.x">CrossRef
    12. Gon?alves VN, Caz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459-71 10.1111/j.1574-6941.2012.01424.x">CrossRef
    13. Gramaje D, Mostert L, Armengol J (2011) Characterization of / Cadophora luteo- / olivacea and / C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathol Mediterr 50:S112–S126
    14. Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008) Dark septate endophytes (DSE) of the / Phialocephala fortinii s.l.-em class="a-plus-plus">Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86:1355-369 10.1139/B08-108">CrossRef
    15. Grünig CR, Queloz V, Duò A, Sieber TN (2009) Phylogeny of / Phaeomollisia / piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to / Phialocephala and / Acephala. Mycol Res 113:207-21 10.1016/j.mycres.2008.10.005">CrossRef
    16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-8
    17. Hoshiai T (1970) Ongul Island: willow. Polar News 10:30-1 (in Japanese)
    18. Jumpponen A, Newsham KK, Neises DJ (2003) Filamentous ascomycetes inhabiting the rhizoid environment of the liverwort / Cephaloziella varians in Antarctica are assessed by direct PCR and cloning. Mycologia 95:457-66 10.2307/3761887">CrossRef
    19. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286-98 10.1093/bib/bbn013">CrossRef
    20. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111-20 10.1007/BF01731581">CrossRef
    21. Lopez MJ, Vargas-Gracía MC, Suárez-Estrella F, Nichols NN, Dien BS, Moreno J (2007) Lignocellulose-degrading enzymes produced by the ascomycete / Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment. Enzyme Microb Technol 40:794-00 10.1016/j.enzmictec.2006.06.012">CrossRef
    22. Matsuda Y, Hijii N (1999) Characterization and identification of / Strobilomyces confusus ectomycorrhizas on momi fir by RFLP analysis of the PCR-amplified ITS region of the rDNA. J For Res 4:145-50 10.1007/BF02762239">CrossRef
    23. Miura K, Kudo M (1970) An agar-medium for aquatic hyphomycetes. Trans Mycol Soc Japan 11:116-18
    24. Newsham KK, Upson R, Read DJ (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fun Ecol 2:10-0 10.1016/j.funeco.2008.10.005">CrossRef
    25. Osono T, Takeda H (1999) A methodological survey on incubation of fungi on leaf litter of / Fagus crenata. Ap For Sci Kansai 8:103-08 (in Japanese with English abstract)
    26. Osono T, Tateno O, Masuya H (2012) Diversity and ubiquity of xylariaceous endophytes in live and dead leaves of temperate forest trees. Mycoscience 54:54-1 10.1016/j.myc.2012.08.003">CrossRef
    27. Rice AV, Currah RS (2006) Two new species of / Pseudogymnoascus with / Geomyces anamorphs and their phylogenetic relationship with / Gymnostellatospora. Mycologia 98:307-18 10.3852/mycologia.98.2.307">CrossRef
    28. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341-53 10.1046/j.1469-8137.2001.00177.x">CrossRef
    29. Rosa LH, Vieira MLA, Santiago LF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant / Colobanthus quitensis (kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178-89
    30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-739 10.1093/molbev/msr121">CrossRef
    31. Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262-68
    32. Tosi S, Onofri S, Brusoni M, Zucconi L, Vishniac H (2005) Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol 28:470-82 10.1007/s00300-004-0698-x">CrossRef
    33. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several / Cryptococcus species. J Bacteriol 172:4238-246
    34. Wunsch MJ, Bergstrom GC (2011) Genetic and morphological evidence that Phoma sclerotioides, causal agent of brown root rot of alfalfa, is composed of a species complex. Phytopathology 101:594-10 10.1094/PHYTO-04-10-0107">CrossRef
  • 作者单位:Dai Hirose (1)
    Yukiko Tanabe (2) (3)
    Masaki Uchida (3)
    Sakae Kudoh (3)
    Takashi Osono (4)

    1. College of Pharmacy, Nihon University, Chiba, 274-8555, Japan
    2. Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
    3. National Institute of Polar Research, Tokyo, 173-8515, Japan
    4. Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan
  • ISSN:1432-2056
文摘
Data are rather lacking on the diversity of microfungi associated with exotic plant substrates transported to continental Antarctica. We examined the diversity and species composition of microfungi associated with withering woody shoots of saplings of Salix spp. (willows) transplanted and in ground contact near Syowa Station, East Antarctica for more than 40?years. The willow saplings originated from Hokkaido, Northern Japan, and were experimentally transplanted in 1967-968, but died within a few years. Dead willow shoots, unbranched and standing on bare ground for approximately 50?years, were used for the isolation of fungi with the surface disinfection method. A total of 43 isolates were retrieved from 32 (78?%) of the 41 shoots tested. The fungal isolates were classified into 18 molecular operational taxonomic units (MOTUs) based on the similarity of rDNA ITS sequences at the 97?% criterion. Leotiomycetes was the most common class in terms of the number of isolates and MOTUs, followed by Dothideomycetes, Sordariomycetes, and Eurotiomycetes. Molecular phylogenetic affinities suggested that the closest relatives of the MOTUs were saprobic and root-associated fungi. The result of the present study suggested that Cadophora luteo-olivacea is widespread in soils throughout Antarctica and likely indigenous.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700