Recent advances in monolithic columns for protein and peptide separation by capillary liquid chromatography
详细信息    查看全文
  • 作者:Yu Liang (1)
    Lihua Zhang (1)
    Yukui Zhang (1)
  • 关键词:Monoliths ; Capillary liquid chromatography ; Proteins ; Peptides ; Separation
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:405
  • 期:7
  • 页码:2095-2106
  • 全文大小:504KB
  • 参考文献:1. Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695-09 CrossRef
    2. Noga M, Sucharski F, Suder P, Silberring J (2007) A practical guide to nano-LC troubleshooting. J Sep Sci 30(14):2179-189 CrossRef
    3. Saz JM, Marina ML (2008) Application of micro- and nano-HPLC to the determination and characterization of bioactive and biomarker peptides. J Sep Sci 31(3):446-58 CrossRef
    4. Shen YF, Page JS, Smith RD (2009) Advanced capillary liquid chromatography-mass spectrometry for proteomics. In: Grushka E, Grinberg N (eds) Advances in chromatography, vol 47. CRC Press, pp 31-8
    5. Gaspari M, Cuda G (2011) Nano LC-MS/MS: a robust setup for proteomic analysis. In: Toms SAWRJ (ed) Nanoproteomics: methods and protocols. Methods in molecular biology, vol 790. Humana Press, pp 115-26
    6. Gritti F, Guiochon G (2012) The current revolution in column technology: how it began, where is it going? J Chromatogr A 1228:2-9 CrossRef
    7. D’Orazio G, Fanali S (2012) C-18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode: usefulness in nano-liquid chromatography and capillary electrochromatography. J Chromatogr A 1232:176-82 CrossRef
    8. Chen CJ, Chen WY, Tseng MC, Chen YR (2012) Tunnel frit: a nonmetallic in-capillary frit for nanoflow ultra high-performance liquid chromatography–mass spectrometry applications. Anal Chem 84:297-03 CrossRef
    9. Bruns S, Grinias JP, Blue LE, Jorgenson JW, Tallarek U (2012) Morphology and separation efficiency of low-aspect-ratio capillary ultrahigh pressure liquid chromatography columns. Anal Chem 84:4496-503 CrossRef
    10. Rozenbrand J, van Bennekom WP (2011) Silica-based and organic monolithic capillary columns for LC: recent trends in proteomics. J Sep Sci 34:1934-944
    11. Wu R, Hu LG, Wang FJ, Ye ML, Zou H (2008) Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J Chromatogr A 1184:369-92 CrossRef
    12. Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902-24 CrossRef
    13. Urban J, Jandera P (2008) Polymethacrylate monolithic columns for capillary liquid chromatography. J Sep Sci 31:2521-540 CrossRef
    14. Bakry R, Huck CW, Bonn GK (2009) Recent applications of organic monoliths in capillary liquid chromatographic separation of biomolecules. J Chromatogr Sci 47:418-31
    15. Arrua RD, Talebi M, Causon TJ, Hilder EF (2012) Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal Chim Acta 738:1-2 CrossRef
    16. Nunez O, Nakanishi K, Tanaka N (2008) Preparation of monolithic silica columns for high-performance liquid chromatography. J Chromatogr A 1191:231-52 CrossRef
    17. Zhu T, Row KH (2012) Preparation and applications of hybrid organic–inorganic monoliths: a review. J Sep Sci 35:1294-302 CrossRef
    18. Wu MH, Wu RA, Zhang ZB, Zou HF (2011) Preparation and application of organic–silica hybrid monolithic capillary columns. Electrophoresis 32:105-15 CrossRef
    19. Lin Z, Huang H, Sun X, Lin Y, Zhang L, Chen G (2012) Monolithic column based on a poly(glycidyl methacrylate-co-4-vinylphenylboronic acid-co-ethylene dimethacrylate) copolymer for capillary liquid chromatography of small molecules and proteins. J Chromatogr A 1246:90-7 CrossRef
    20. Huang H, Lin Z, Lin Y, Sun X, Xie Y, Zhang L, Chen G (2012) Preparation and evaluation of poly(4-vinylphenylboronic acid-co-pentaerythritol triacrylate) monolithic column for capillary liquid chromatography of small molecules and proteins. J Chromatogr A 1251:82-0 CrossRef
    21. Li Y, Dennis Tolley H, Lee ML (2010) Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins. J Chromatogr A 1217:4934-945 CrossRef
    22. Chen X, Tolley HD, Lee ML (2011) Monolithic capillary columns synthesized from a single phosphate-containing dimethacrylate monomer for cation-exchange chromatography of peptides and proteins. J Chromatogr A 1218:4322-331 CrossRef
    23. Liu K, Tolley HD, Lee ML (2012) Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules. J Chromatogr A 1227:96-04 CrossRef
    24. Ayres N (2011) Atom transfer radical polymerization: a robust and versatile route for polymer synthesis. Polym Rev 51:138-62 CrossRef
    25. Wang H, Dong X, Yang M (2012) Development of separation materials using controlled/living radical polymerization. Trends Anal Chem 31:96-08 CrossRef
    26. Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S (2009) Bioapplications of RAFT polymerization. Chem Rev 109:5402-436 CrossRef
    27. Turson M, Zhou M, Jiang P, Dong XC (2011) Monolithic poly(ethylhexyl methacrylate-co-ethylene dimethacrylate) column with restricted access layers prepared via reversible addition-fragmentation chain transfer polymerization. J Sep Sci 34:127-34 CrossRef
    28. Connolly D, Twamley B, Paull B (2010) High-capacity gold nanoparticle functionalised polymer monoliths. Chem Commun 46:2109-111 CrossRef
    29. Xu Y, Cao Q, Svec F, Fréchet JMJ (2010) Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. Anal Chem 82:3352-358 CrossRef
    30. Cao Q, Xu Y, Liu F, Svec F, Fréchet JMJ (2010) Polymer monoliths with exchangeable chemistries: use of gold nanoparticles as intermediate ligands for capillary columns with varying surface functionalities. Anal Chem 82:7416-421 CrossRef
    31. Lv Y, Alejandro FM, Fréchet JMJ, Svec F (2012) Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A 1261:121-28 CrossRef
    32. Krenkova J, Lacher NA, Svec F (2010) Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides. Anal Chem 82:8335-341 CrossRef
    33. Guerrouache M, Mahouche-Chergui S, Chehimi MM, Carbonnier B (2012) Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol-yne click photopatterning approach. Chem Commun 48:7486-488 CrossRef
    34. Nunez O, Ikegami T, Kajiwara W, Miyamoto K, Horie K, Tanaka N (2007) Preparation of high efficiency and highly retentive monolithic silica capillary columns for reversed-phase chromatography by chemical modification by polymerization of octadecyl methacrylate. J Chromatogr A 1156:35-4 CrossRef
    35. Nunez O, Ikegami T, Miyamoto K, Tanaka N (2007) Study of a monolithic silica capillary column coated with poly(octadecyl methacrylate) for the reversed-phase liquid chromatographic separation of some polar and non-polar compounds. J Chromatogr A 1175:7-5 CrossRef
    36. Soonthorntantikul W, Leepipatpiboon N, Ikegami T, Tanaka N, Nhujak T (2009) Selectivity comparisons of monolithic silica capillary columns modified with poly(octadecyl methacrylate) and octadecyl moieties for halogenated compounds in reversed-phase liquid chromatography. J Chromatogr A 1216:5868-874 CrossRef
    37. Hara T, Makino S, Watanabe Y, Ikegami T, Cabrera K, Smarsly B, Tanaka N (2010) The performance of hybrid monolithic silica capillary columns prepared by changing feed ratios of tetramethoxysilane and methyltrimethoxysilane. J Chromatogr A 1217:89-8 CrossRef
    38. Chen J, Zhang P, Jia L (2011) Ionic liquids-assisted fabrication of silica-based monolithic columns. J Chromatogr A 1218:3699-703 CrossRef
    39. Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y (2008) Organic–inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Anal Chem 80:2949-956 CrossRef
    40. Roux R, Jaoude MA, Demesmay C, Rocca JL (2008) Optimization of the single-step synthesis of hybrid C-8 silica monoliths dedicated to nano-liquid chromatography and capillary electrochromatography. J Chromatogr A 1209:120-27 CrossRef
    41. Roux R, Jaoude MA, Demesmay C (2009) Improvement of chromatographic performances of in-situ synthesized hybrid C8 silica monoliths by reduction of structural radial heterogeneities. J Chromatogr A 1216:3857-863 CrossRef
    42. Wu MH, Chen YZ, Wu RA, Li RB, Zou HF, Chen B, Yao SZ (2010) The synthesis of chloropropyl-functionalized silica hybrid monolithic column with modification of N, N-dimethyl-N-dodecylamine for capillary electrochromatography separation. J Chromatogr A 1217:4389-394 CrossRef
    43. Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y (2011) Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic–inorganic hybrid silica monolith. Proteomics 11:991-95 CrossRef
    44. Wu M, Ra W, Wang F, Ren L, Dong J, Liu Z, Zou H (2009) “One-pot-process for fabrication of organic–silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal Chem 81:3529-536 CrossRef
    45. Dong M, Wu M, Wang F, Qin H, Han G, Gong J, Ra W, Ye M, Liu Z, Zou H (2010) Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest. Anal Chem 82:2907-915 CrossRef
    46. Zhang ZB, Wu MH, Wu RA, Done J, Ou JJ, Zou HF (2011) Preparation of perphenylcarbamoylated beta-cyclodextrin-silica hybrid monolithic column with “one-pot-approach for enantioseparation by capillary liquid chromatography. Anal Chem 83:3616-622 CrossRef
    47. Zhang Z, Lin H, Ou J, Qin H, Ra W, Dong J, Zou H (2012) Preparation of phenyl-silica hybrid monolithic column with “one-pot-process for capillary liquid chromatography. J Chromatogr A 1228:263-69 CrossRef
    48. Lin H, Ou JJ, Zhang ZB, Dong J, Wu MH, Zou HF (2012) Facile preparation of zwitterionic organic–silica hybrid monolithic capillary column with an improved “one-pot-approach for hydrophilic-interaction liquid chromatography (HILIC). Anal Chem 84:2721-728 CrossRef
    49. Wu M, Ra W, Li R, Qin H, Dong J, Zhang Z, Zou H (2010) Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic–organic hybrid monolithic columns. Anal Chem 82:5447-454 CrossRef
    50. Ou J, Zhang Z, Lin H, Dong J, Wu M, Zou H (2012) Preparation and application of hydrophobic hybrid monolithic columns containing polyhedral oligomeric silsesquioxanes for capillary electrochromatography. Electrophoresis 33:1660-668 CrossRef
    51. Li Y, Lee ML (2009) Biocompatible polymeric monoliths for protein and peptide separations. J Sep Sci 32:3369-378 CrossRef
    52. Aggarwal P, Tolley HD, Lee ML (2012) Monolithic bed structure for capillary liquid chromatography. J Chromatogr A 1219:1-4 CrossRef
    53. Zhang J, Wu S-L, Kim J, Karger BL (2007) Ultratrace liquid chromatography/mass spectrometry analysis of large peptides with post-translational modifications using narrow-bore polystyrene-divinylbenzene) monolithic columns and extended range proteomic analysis. J Chromatogr A 1154:295-07 CrossRef
    54. Eeltink S, Wouters B, Desmet G, Ursem M, Blinco D, Kemp GD, Treumann A (2011) High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns. J Chromatogr A 1218:5504-511 CrossRef
    55. Eeltink S, Dolman S, Detobel F, Swart R, Ursem M, Schoenmakers PJ (2010) High-efficiency liquid chromatography-mass spectrometry separations with 50?mm, 250?mm, and 1?m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. J Chromatogr A 1217:6610-615 CrossRef
    56. van de Meent M, Eeltink S, de Jong G (2011) Potential of poly(styrene-co-divinylbenzene) monolithic columns for the LC-MS analysis of protein digests. Anal Bioanal Chem 399:1845-852 CrossRef
    57. Nischang I, Svec F, Frechet JMJ (2009) Downscaling limits and confinement effects in the miniaturization of porous polymer monoliths in narrow bore capillaries. Anal Chem 81:7390-396 CrossRef
    58. Jiang X, Dong J, Wang F, Feng S, Ye M, Zou H (2008) Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome and peptide profiling analysis by using a monolithic analytical capillary column. Electrophoresis 29:1612-618 CrossRef
    59. Eeltink S, Geiser L, Svec F, Frechet JMJ (2007) Optimization of the porous structure and polarity of polymethacrylate-based monolithic capillary columns for the LC-MS separation of enzymatic digests. J Sep Sci 30:2814-820 CrossRef
    60. Sinner FM, Gatschelhofer C, Mautner A, Magnes C, Buchmeiser MR, Pieber TR (2008) Ring-opening metathesis polymerization-derived monolithic capillary columns for high-performance liquid chromatography: downscaling and application in medical research. J Chromatogr A 1191:274-81 CrossRef
    61. Luo Q, Page JS, Tang K, Smith RD (2007) MicroSPE-nanoLC-ESI-MS/MS using 10-mu m-i.d. Silica-based monolithic columns for proteomics. Anal Chem 79:540-45 CrossRef
    62. Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y (2010) One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coil proteome on a microarray scale. Anal Chem 82:2616-620 CrossRef
    63. Eghbali H, Sandra K, Detobel F, Lynen F, Nakanishi K, Sandra P, Desmet G (2011) Performance evaluation of long monolithic silica capillary columns in gradient liquid chromatography using peptide mixtures. J Chromatogr A 1218:3360-366 CrossRef
    64. Horie K, Sato Y, Kimura T, Nakamura T, Ishihama Y, Oda Y, Ikegami T, Tanaka N (2012) Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column. J Chromatogr A 1228:283-91 CrossRef
    65. Iwasaki M, Sugiyama N, Tanaka N, Ishihama Y (2012) Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity. J Chromatogr A 1228:292-97 CrossRef
    66. van de Meent MHM, de Jong GJ (2009) Potential of long capillary monolithic columns for the analysis of protein digests. J Sep Sci 32:487-93 CrossRef
    67. Vaast A, Broeckhoven K, Dolman S, Desmet G, Eeltink S (2012) Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3?μm porous and 2.7?μm fused-core silica particles. J Chromatogr A 1228:270-75 CrossRef
    68. Rogeberg M, Wilson SR, Malerod H, Lundanes E, Tanaka N, Greibrokk T (2011) High efficiency, high temperature separations on silica based monolithic columns. J Chromatogr A 1218:7281-288 CrossRef
    69. Watanabe Y, Ikegami T, Horie K, Hara T, Jaafar J, Tanaka N (2009) Improvement of separation efficiencies of anion-exchange chromatography using monolithic silica capillary columns modified with polyacrylates and polymethacrylates containing tertiary amino or quaternary ammonium groups. J Chromatogr A 1216:7394-401 CrossRef
    70. Krenkova J, Gargano A, Lacher NA, Schneiderheinze JM, Svec F (2009) High binding capacity surface grafted monolithic columns for cation exchange chromatography of proteins and peptides. J Chromatogr A 1216:6824-830 CrossRef
    71. Gu B, Li Y, Lee ML (2007) Polymer monoliths with low hydrophobicity for strong cation-exchange capillary liquid chromatography of peptides and proteins. Anal Chem 79:5848-855 CrossRef
    72. Chen X, Tolley HD, Lee ML (2009) Polymeric strong cation-exchange monolithic column for capillary liquid chromatography of peptides and proteins. J Sep Sci 32:2565-573 CrossRef
    73. Chen X, Tolley HD, Lee ML (2010) Polymeric cation-exchange monolithic columns containing phosphoric acid functional groups for capillary liquid chromatography of peptides and proteins. J Chromatogr A 1217:3844-854 CrossRef
    74. Chen X, Tolley HD, Lee ML (2011) Weak cation-exchange monolithic column for capillary liquid chromatography of peptides and proteins. J Sep Sci 34:2063-071
    75. Li Y, Gu BH, Tolley HD, Lee ML (2009) Preparation of polymeric monoliths by copolymerization of acrylate monomers with amine functionalities for anion-exchange capillary liquid chromatography of proteins. J Chromatogr A 1216:5525-532 CrossRef
    76. Liu J, Ren LB, Liu YC, Li HY, Liu Z (2012) Weak anion exchange chromatographic profiling of glycoprotein isoforms on a polymer monolithic capillary. J Chromatogr A 1228:276-82 CrossRef
    77. Wang F, Dong J, Jiang X, Ye M, Zou H (2007) Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis. Anal Chem 79:6599-606 CrossRef
    78. Zhang Z, Wang F, Xu B, Qin H, Ye M, Zou H (2012) Preparation of capillary hybrid monolithic column with sulfonate strong cation exchanger for proteome analysis. J Chromatogr A 1256:136-43 CrossRef
    79. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231-47 CrossRef
    80. Horie K, Ikegami T, Hosoya K, Saad N, Fiehn O, Tanaka N (2007) Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography. J Chromatogr A 1164:198-05 CrossRef
    81. Chen ML, Li LM, Yuan BF, Ma Q, Feng YQ (2012) Preparation and characterization of methacrylate-based monolith for capillary hydrophilic interaction chromatography. J Chromatogr A 1230:54-0 CrossRef
    82. Jiang ZJ, Smith NW, Ferguson PD, Taylor MR (2009) Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography. J Sep Sci 32:2544-555 CrossRef
    83. Chen X, Tolley HD, Lee ML (2011) Preparation of zwitterionic polymeric monolithic columns for hydrophilic interaction capillary liquid chromatography. J Sep Sci 34:2088-096
    84. Jiang ZJ, Reilly J, Everatt B, Smith NW (2009) Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography. J Chromatogr A 1216:2439-448 CrossRef
    85. Li YY, Tolley HD, Lee ML (2009) Poly[hydroxyethyl acrylate- / co-poly(ethylene glycol) diacrylate] monolithic column for efficient hydrophobic interaction chromatography of proteins. Anal Chem 81:9416-424 CrossRef
  • 作者单位:Yu Liang (1)
    Lihua Zhang (1)
    Yukui Zhang (1)

    1. Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
  • ISSN:1618-2650
文摘
Capillary liquid chromatography (cLC) has great potential for protein and peptide separation, with advantages of high efficiency, high resolution, low sample consumption, and high sensitivity when coupled with mass spectrometry. In recent years, monoliths have been widely used as the stationary phases for capillary columns, owing to easy preparation, high permeability, fast mass transfer, and low backpressure. This review summarizes recent advances (2007-012) in monolithic columns for protein and peptide separation by cLC. After a brief introduction on the preparation of monolithic capillary columns, the emphasis of this review is focused on the recent application of such columns for protein and peptide separation by cLC. Furthermore, the challenges and potential hot points of monolithic capillary columns in the future are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700