Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30
详细信息    查看全文
  • 作者:Liaoyuan Zhang (1)
    Quanming Xu (1)
    Xiaoqian Peng (1)
    Boheng Xu (1)
    Yuehao Wu (1)
    Yulong Yang (1)
    Shujing Sun (1)
    Kaihui Hu (1)
    Yaling Shen (2)
  • 关键词:Serratia marcescens ; 2 ; 3 ; Butanediol isomers ; Glycerol dehydrogenase ; Expression ; Enzymatic properties
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:41
  • 期:9
  • 页码:1319-1327
  • 全文大小:1,339 KB
  • 参考文献:1. Antoine E, Rolland JL, Raffin JP, Dietrich J (1999) Cloning and over-expression in / Escherichia coli of the gene encoding NADPH group III alcohol dehydrogenase from / Thermococcus hydrothermalis. Eur J Biochem 264:880-89 CrossRef
    2. Cabiscol E, Aguilar J, Ros J (1994) Metal-catalysed oxidation of Fe2+ dehydrogenase. J Biol Chem 269:6592-597
    3. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol Adv 27:715-25 CrossRef
    4. Chen C, Wei D, Shi JP, Wang M, Hao J (2014) Mechanism of 2,3-butanediol stereoisomer formation in / Klebsiella pneumoniae. Applied Microbiol Biotechnol. doi:10.1007/s00253-014-5526-9
    5. González E, Rosario Fernanzdez M, Larroy C, Lluis Sola, Pericas MA (2000) Characterization of a (2 / R,3 / R)-2,3-butanediol dehydrogenase as the / Saccharomyces cerevisiae / YAL060W gene product. J Biol Chem 275(46):35876-5885 CrossRef
    6. Henikoff S, Henikoff JG (1994) Protein family classification based on searching a database of blocks. Genomics 19:97-07 CrossRef
    7. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351-64 CrossRef
    8. Li LX, Zhang LJ, Li K, Wang Y, Gao C, Han BB, Ma CQ, Xu P (2013) A newly isolated / Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol Biofuels 6:123 CrossRef
    9. Liu Z, Qin JY, Gao C, Hua DL, Ma CQ, Li LX, Wang Y, Xu P (2011) Production of (2 / S,3 / S)-2,3-butanediol and (3 / S)-acetoin from glucose using resting cells of / Klebsiella pneumonia and / Bacillus / subtilis. Bioresource Technol 102:10741-0744 CrossRef
    10. Moon JH, Lee HJ, Park SY, Song JM, Park MY, Park HM, Sun JL, Park JH, Kim BY, Kim JS (2011) Structure of iron-dependent alcohol dehydrogenase 2 from Zymomonas mobilis ZM4 with and without NAD+ cofactor. J Mol Biol 407:413-24 CrossRef
    11. Nicholson WL (2008) The / Bacillus subtilis / ydjL ( / bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74(22):6832-838 CrossRef
    12. Rao B, Zhang LY, Sun JA, Su G, Wei DZ, Chu J, Zhu JW, Shen YL (2012) Characterization and regulation of the 2,3-butanediol pathway in / Serratia marcescens. Appl Microbiol Biotechnol 93(5):2147-159 CrossRef
    13. Shi LT, Gao SS, Yu Y, Yang HJ (2013) Microbial production of 2,3-butanediol by a newly-isolated strain of / Serratia marcescens. Biotechnol Lett. doi:10.1007/s10529-013-1433-x
    14. Takusagawa Y, Otagiri M, Ui S, Ohtsuki T, Mimura A, Ohkuma M, Kudo T (2001) Purification and characterization of L-2,3-butanediol dehydrogenase of / Brevibacterium saccharolyticum C-1012 expressed in / Escherichia coli. Biosci Biotechnol Biochem 65(8):1876-878 CrossRef
    15. Ui S, Otagiri M, Mimura A, Dohmae N, Takio K, Ohkuma M, Kudo T (1998) Cloning, expression and nucleotide sequence of the L-2,3-butanediol dehydrogenase gene from / Brevibacterium saccharolyticum C-1012. J Ferment Bioeng 86(3):290-95 CrossRef
    16. Ui S, Okajima Y, Mimura A, Kanai H, Kudo T (1997) Molecular generation of an / Escherichia coli strain producing only the / meso-isomer of 2,3-butanediol. J Ferment Bioeng 84:185-89 CrossRef
    17. Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in / Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443-450
    18. Wang Z, Song Q, Yu M, Wang Y, Xiong B, Zhang Y, Zheng J, Ying X (2014) Characterization of a stereospecific acetoin (diacetyl) reductase from / Rhodococcus erythropolis WZ010 and its application for the synthesis of (2 / S,3 / S)-2,3-butanediol. Appl Microbiol Biotechnol 98(2):641-50 CrossRef
    19. Wang Y, Tao F, Xu P (2014) Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in / Klebsiella pneumoniae. J Biol Chem. doi:10.1074/jbc.M113.525535
    20. Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917-26 CrossRef
    21. Yan YJ, Lee CC, Liao JC (2009) Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7:3914-917 CrossRef
    22. Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2013) Improved production of 2,3-butanediol in / Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One 8(10):e76149 CrossRef
    23. Yang TH, Rathnasingh C, Lee HJ, Seung D (2014) Identification of acetoin reductases involved in 2,3-butanediol pathway in / Klebsiella oxytoca. J Biotechnol 172:59-6 CrossRef
    24. Yu B, Sun JB, Bommareddy RR, Song LF, Zeng AP (2011) Novel (2 / R,3 / R)-2,3-butanediol dehydrogenase from potential industrial strain / Paenibacillus polymyxa ATCC 12321. Appl Environ Microbiol 77(12):4230-233 CrossRef
    25. Zhang GL, Wang CW, Li C (2012) Cloning, expression and characterization of / meso-2,3-butanediol dehydrogenase from / Klebsiella pneumoniae. Biotechnol Lett 34:1519-523 CrossRef
    26. Zhang LY, Yang YL, Sun JA, Shen YL, Wei DZ, Zhu JW, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of / Serratia marcescens H30. Bioresource Technol 101:1961-967 CrossRef
    27. Zhang LY, Xu QM, Zhan SR, Li YY, Lin H, Sun SJ, Sha L, Hu KH, Guan X, Shen YL (2014) A new NAD(H)-dependent / meso-2,3-butanediol dehydrogenase from an industrially potential strain / Serratia marcescens H30. Applied Microbiol Biotechnol 98(3):1175-184 CrossRef
  • 作者单位:Liaoyuan Zhang (1)
    Quanming Xu (1)
    Xiaoqian Peng (1)
    Boheng Xu (1)
    Yuehao Wu (1)
    Yulong Yang (1)
    Shujing Sun (1)
    Kaihui Hu (1)
    Yaling Shen (2)

    1. Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, People’s Republic of China
    2. State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
  • ISSN:1476-5535
文摘
The meso-2,3-butanediol dehydrogenase (meso-BDH) from S. marcescens H30 is responsible for converting acetoin into 2,3-butanediol during sugar fermentation. Inactivation of the meso-BDH encoded by budC gene does not completely abolish 2,3-butanediol production, which suggests that another similar enzyme involved in 2,3-butanediol formation exists in S. marcescens H30. In the present study, a glycerol dehydrogenase (GDH) encoded by gldA gene from S. marcescens H30 was expressed in Escherichia coli BL21(DE3), purified and characterized for its properties. In vitro conversion indicated that the purified GDH could catalyze the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol was not a substrate for the GDH at all. Kinetic parameters of the GDH enzyme showed lower K m value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, implying its physiological role in favor of 2,3-butanediol formation. Maximum activity for reduction of (3S/3R)-acetoin and oxidations of meso-2,3-butanediol and glycerol was observed at pH 8.0, while it was pH 7.0 for diacetyl reduction. The enzyme exhibited relative high thermotolerance with optimum temperature of 60?°C in the oxidation–reduction reactions. Over 60?% of maximum activity was retained at 70?°C. Additionally, the GDH activity was significantly enhanced for meso-2,3-BD oxidation in the presence of Fe2+ and for (3S/3R)-acetoin reduction in the presence of Mn2+, while several cations inhibited its activity, particularly Fe2+ and Fe3+ for (3S/3R)-acetoin reduction. The properties provided potential application for single configuration production of acetoin and 2,3-butanediol .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700