Evaluation of the susceptibility of coal to spontaneous combustion by a TG profile subtraction method
详细信息    查看全文
  • 作者:Yulong Zhang ; Junfeng Wang ; Sheng Xue ; Yue Wu…
  • 关键词:TGA ; Coal ; Low ; temperature Oxidation ; Subtraction Method ; Kinetics
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:33
  • 期:3
  • 页码:862-872
  • 全文大小:742 KB
  • 参考文献:1.S. Xue, J. Wang, J. Xie and J. Wu, Int. J. Coal Geol., 83, 82 (2010).CrossRef
    2.Z. Song and C. Kuenzer, Int. J. Coal Geol., 133, 72 (2014).CrossRef
    3.M. Mastalerz, W. Solano-Acosta, A. Schimmelmann and A. Drobniak, Int. J. Coal Geol., 79, 167 (2009).CrossRef
    4.J. N. Carras, S. J. Day, A. Saghafi and D. Williams, Int. J. Coal Geol., 78, 161 (2009).CrossRef
    5.E. Jo, D. Chun, I. Park, S. Kim, Y. Rhim, H. Choi, J. Yoo, J. Lim and S. Lee, Korean J. Chem. Eng., 31, 981 (2014).CrossRef
    6.H. Wang, B. Z. Dlugogorski and E. M. Kennedy, Energy Fuels, 17, 150 (2003).CrossRef
    7.L. Yuan and A. C. Smith, Int. J. Coal Geol., 88, 24 (2011).CrossRef
    8.Y. Zhang, J. Wang, J. Wu, S. Xue, Z. Li and L. Chang, Int. J. Coal Geol., 1, 140 (2015).
    9.W. Jo, H. Choi, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim and S. Lee, Korean J. Chem. Eng., 32, 255 (2015).CrossRef
    10.G. Dou, H. Xin, D. Wang, B. Qin and X. Zhoung, Korean J. Chem. Eng., 31, 801 (2014).CrossRef
    11.B. B. Beamish and G. R. Hamilton, Int. J. Coal Geol., 64, 133 (2005).CrossRef
    12.W. Jo, H. Choi, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim and S. Lee, Korean J. Chem. Eng., 30, 1034 (2013).CrossRef
    13.H. Choi, W. Jo, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim and S. Lee, Korean J. Chem. Eng., 31, 2151 (2014).CrossRef
    14.V. Slovák and B. Taraba, J. Therm. Anal. Calorim., 363, 110 (2012).
    15.C. Avila, T. Wu and E. Lester, Energy Fuels, 28, 1765 (2014).CrossRef
    16.Y. Zhang, J. Wu, L. Chang, J. Wang, S. Xue and Z. Li, Int. J. Coal Geol., 120, 41 (2014).CrossRef
    17.N. K. Mohalik, D. C. Panigrahi amd V. K. Singh, J. Therm. Anal. Cal., 98, 507 (2009).CrossRef
    18.V. Slovák and B. Taraba, J. Therm. Anal. Cal., 101, 641 (2010).CrossRef
    19.E. Sima-Ella, G. Yuan and T. Mays, Fuel, 84, 1920 (2005).CrossRef
    20.M. L. E. TeVrucht and P. R. Griffiths, Energy Fuels, 3, 522 (1989).CrossRef
    21.H. Wang, B. Z. Dlugogorski and E. M. Kennedy, Prog. Energy Combust. Sci., 29, 487 (2003).CrossRef
  • 作者单位:Yulong Zhang (1) (2)
    Junfeng Wang (1)
    Sheng Xue (1) (3)
    Yue Wu (4)
    Zhengfeng Li (2)
    Liping Chang (2)

    1. College of Mining Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
    2. State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
    3. CSIRO Energy, P. O. Box 883, Kenmore, QLD, 4069, Australia
    4. Faculty of Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Industrial Chemistry and Chemical Engineering
    Catalysis
    Materials Science
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1975-7220
文摘
It is imperative to have an in-depth understanding of the intrinsic reaction between coal and oxygen during low-temperature oxidation, as the reaction is the main source responsible for the self-heating and spontaneous combustion of coal. As low-temperature oxidation of coal involves a series of physical and chemical process and many parallel reactions, it is difficult to directly investigate the intrinsic reaction between coal and oxygen by conventional analytical method. Thermogravimetric analysis (TGA) was used to investigate the intrinsic reaction between coal and oxygen based on the mass change. By means of the subtraction analysis method of TGA, the TG-subtraction curves were obtained by subtracting the TG-N2 curves from the TG-air curves. The results indicate that a TG-subtraction curve can better reflect the intrinsic reaction of coal oxidation than a TG-air curve by eliminating the influence of evaporation of water and thermal decomposition of inherent oxygen-containing groups. In terms of the rate of mass increase, the intrinsic reactions can be divided into three stages: slow oxidation stage, advanced oxidation stage and rapid oxidation stage. The activation energy at each of the stages, obtained by Coats and Redfern’s model, can be used to as a technical parameter to evaluate the proneness of coal spontaneous combustion. The optimum experiment conditions were also developed to study low-temperature coal oxidation with the subtraction method of TGA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700