Investigation on the Properties of Nonpolar m-Plane GaN-Based Light-Emitting Diode Wafers Grown on LiGaO2(100) Substrates
详细信息    查看全文
  • 作者:Weijia Yang ; Wenliang Wang ; Yunhao Lin ; Zuolian Liu
  • 关键词:Nonpolar ; m ; plane GaN ; LiGaO2(100) substrates ; properties ; high ; efficiency LEDs
  • 刊名:Journal of Electronic Materials
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:44
  • 期:8
  • 页码:2670-2678
  • 全文大小:1,068 KB
  • 参考文献:1.W. Wang, H. Yang, and G. Li, CrystEngComm 15, 2669 (2013).View Article
    2.Z.X. Zhang, X.J. Pan, T. Wang, L. Jia, L.X. Liu, W.B. Wang, and E.Q. Xie, J. Electron. Mater. 37, 1049 (2008).View Article
    3.T. Makimoto, K. Kumarkura, T. Nishida, and N. Kobayashi, J. Electron. Mater. 31, 313 (2002).View Article
    4.J.J. Wierer, A. David, and M.M. Megens, Nat. Photonics 3, 163 (2009).View Article
    5.W. Wang, H. Yang, and G. Li, J. Mater. Chem. C 1, 4070 (2013).View Article
    6.S.P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. Pan, C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J.S. Speck, and S. Nakamura, Acta Mater. 61, 945 (2013).View Article
    7.L.X. Zhao, E.J. Thrush, C.J. Humphreys, and W.A. Phillips, J. Appl. Phys. 103, 024501 (2008).View Article
    8.G. Moldovan, P. Kazemian, P.R. Edwards, V.K.S. Ong, O. Kurniawan, and C.J. Humphreys, Ultramicroscopy 107, 382 (2007).View Article
    9.Y. Taniyasu, M. Kasu, and T. Makimoto, Nature 441, 325 (2006).View Article
    10.F.A. Ponce and D.P. Bour, Nature 386, 351 (1997).View Article
    11.K. Chung, C.H. Lee, and G.C. Yi, Science 330, 655 (2010).View Article
    12.S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).View Article
    13.S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, Appl. Phys. Lett. 91, 171110 (2007).View Article
    14.B. Liu, R. Zhang, Z.L. Xie, C.X. Liu, J.Y. Kong, J. Yao, Q.J. Liu, Z. Zhang, D.Y. Fu, X.Q. Xiu, H. Lu, P. Chen, P. Han, S.L. Gu, Y. Shi, and Y.D. Zheng, Appl. Phys. Lett. 91, 253506 (2007).View Article
    15.K. Tadatomo and N. Okada, Proc. SPIE 7954, 795416 (2013).View Article
    16.Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, and D.M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003).View Article
    17.K. Kim, M.C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, and S.P. DenBaar, Phys. Status Solidi R 1, 125 (2007).View Article
    18.T. Ishii, Y. Tazoh, and S. Miyazawa, J. Cryst. Growth 189/190, 208 (1998).View Article
    19.S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).View Article
    20.D. Strauch, Landolt-B?rnstein Group III Condensed Matter 44D, 313 (2011).View Article
    21.K. Xu, J. Xu, P.Z. Deng, R.S. Qiu, and Z.J. Fang, Phys. Status Solidi (a) 176, 589 (1999).View Article
    22.M.M.C. Chou, C.L. Chen, D.R. Hang, and W.T. Yang, Thin Solid Films 519, 5066 (2011).View Article
    23.K. Sakurada, A. Kobayashi, Y. Kawaguchi, J. Ohta, and H. Fujioka, Appl. Phys. Lett. 90, 211913 (2007).View Article
    24.B. Veliěkov, A. Mogilatenko, R. Bertram, D. Klimm, R. Uecker, W. Neumann, and R. Fornari, J. Cryst. Growth 310, 214 (2008).View Article
    25.F. Scholz, Semicond. Sci. Technol. 27, 024002 (2012).View Article
    26.W.Q. Yang, F.X. Gan, P.Z. Deng, J. Xu, S.Z. Li, and R. Zhang, J. Inorg. Mater. 18, 215 (2003).
    27.K. Iwata, H. Asahi, K. Asami, R. Kuroiwa, and S. Gonda, Jpn. J. Appl. Phys. 36, 661 (1997).View Article
    28.G.Q. Li, S.J. Shih, and Z.Y. Fu, Chem. Commun. 46, 1206 (2010).View Article
    29.Y.B. Tao, Z.Z. Chen, T.J. Yu, Y. Yin, X.N. Kang, Z.J. Yang, G.Z. Ran, and G.Y. Zhang, J. Cryst. Growth 318, 509 (2011).View Article
    30.B.H. Kong, W.S. Han, H.K. Cho, M.Y. Kim, R.J. Choi, and B.K. Kim, J. Cryst. Growth 310, 4916 (2008).View Article
    31.N.H. Niu, H.B. Wang, J.P. Liu, N.X. Liu, Y.H. Xing, J. Han, J. Deng, and G.D. Shen, J. Cryst. Growth 286, 209 (2006).View Article
    32.X. Xu, Y. Du, and S.M. George, J. Vac. Sci. Technol. A 23, 581 (2005).View Article
    33.T.R. Itzdorf, Modern Electroplating, 5th ed., ed. M. Schlesinger and M. Paunovic (Hoboken: Wiley, 2010),
    34.W. Yang, W. Wang, Y. Lin, Z. Liu, S. Zhou, H. Qian, F. Gao, S. Zhang, and G. Li, J. Mater. Chem. C 2, 801 (2014).View Article
    35.C.H. Chiu, P.M. Tu, S.P. Chang, C.C. Lin, C.Y. Jang, Z.Y. Li, H.C. Yang, H.W. Zan, H.C. Kuo, T.C. Lu, S.C. Wang, and C.Y. Chang, Jpn. J. Appl. Phys. 51, 04DG11 (2012).View Article
    36.S.T. Li, F.Y. Jiang, G.H. Fan, W.Q. Fang, and L. Wang, Phys. B 391, 169 (2007).View Article
    37.Y.J. Liu, T.Y. Tsai, C.H. Yen, L.Y. Chen, T.H. Tsai, C.C. Huang, T.Y. Chen, C.H. Hsu, and W.C. Liu, Opt. Express 18, 2729 (2010).View Article
    38.A.Y. Polyakov, A.V. Govorkov, N.B. Smirnov, A.V. Markov, I.H. Lee, J.W. Ju, and S.J. Pearton, Appl. Phys. Lett. 94, 142103 (2009).View Article
    39.Y.H. Cho, F. Fedler, R.J. Hauenstein, G.H. Park, J.J. Song, S. Keller, U.K. Mishra, and S.P. DenBaars, J. Appl. Phys. 85, 3006 (1999).View Article
    40.Q.L. Zhang, F.Y. Meng, P.A. Crozier, N. Newman, and S. Mahajan, Acta Mater. 59, 3759 (2011).View Article
    41.L.S. Wang, S. Tripathy, B.Z. Wang, and S.J. Chua, Appl. Surf. Sci. 253, 214 (2006).View Article
    42.H. Morkoc, Mater. Sci. Eng. R 33, 135 (2001).View Article
    43.S. Tripathy, S.J. Chua, P. Chen, and Z.L. Miao, J. Appl. Phys. 92, 3503 (2002).View Article
    44.H.D
  • 作者单位:Weijia Yang (1)
    Wenliang Wang (1)
    Yunhao Lin (1)
    Zuolian Liu (1)
    Shizhong Zhou (1)
    Huirong Qian (1)
    Guoqiang Li (1) (2)

    1. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
    2. Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
High-quality nonpolar m-plane GaN-based light-emitting diode (LED) wafers on LiGaO2(100) substrates have been grown in this work by the combination of pulsed laser deposition and molecular beam epitaxy technologies. This work systemically studies the crystalline quality, surface morphology, as well as optoelectronic properties of as-grown nonpolar m-plane GaN-based LED wafers. The as-grown nonpolar m-plane GaN-based LED wafers on LiGaO2(100) substrates show good structural properties with estimated dislocation density ?08 cm? and abrupt InGaN/GaN interfaces. A photoluminescence peak at approximately 446?nm with full-width at half-maximum (FWHM) of 21.2?nm is identified at room temperature. A strong electroluminescence (EL) peak observed at 446?nm with FWHM of 20.7?nm is obtained at an injection current of 20?mA. Furthermore, there is a slight blue shift in the EL emission wavelength with increase in the injection current, while the EL FWHM can be kept stable thanks to the absence of the quantum confined Stark effect. This study of high-quality nonpolar m-plane GaN-based LEDs is of paramount importance for future application of high-efficiency GaN-based devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700