Embedded Manifold-Based Kernel Fisher Discriminant Analysis for Face Recognition
详细信息    查看全文
  • 作者:Guoqiang Wang ; Nianfeng Shi ; Yunxing Shu ; Dianting Liu
  • 关键词:Face recognition ; Dimensionality reduction ; Manifold learning ; Locally linear embedding ; Kernel discriminant analysis
  • 刊名:Neural Processing Letters
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:43
  • 期:1
  • 页码:1-16
  • 全文大小:2,591 KB
  • 参考文献:1.Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458CrossRef
    2.Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef
    3.Belhumeour PN, Hedpsnhs JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef
    4.Howland P, Wang JL, Park H (2006) Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognit 39(2):277–287CrossRef
    5.Liang YX, Li CR, Gong WG, Pan YJ (2007) Uncorrelated linear discriminant analysis based on weighted pairwise Fisher criterion. Pattern Recognit 40(12):3606–3625CrossRef MATH
    6.Zhao W, Zhao L, Zou C (2004) An efficient algorithm to solve the small sample size problem for LDA. Pattern Recognit 37(5):1077–1079CrossRef MATH
    7.Ye J, Li Q (2005) A two-stage linear discriminant analysis via QR-decomposition. IEEE Trans Pattern Anal Mach Intell 27(6):929–941CrossRef
    8.Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319CrossRef
    9.Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404CrossRef
    10.Tenebaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323CrossRef
    11.Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326CrossRef
    12.Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of neural information processing systems, Vancouver, pp 585–591
    13.Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRef MATH
    14.Weinberger K, Saul L (2004) Unsupervised learning of image manifolds by semidefinite programming. In: Proceedings of the IEEE international conference computer vision and pattern recognition, vol 2, pp 988–985
    15.Zhang Z, Zha H (2005) Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment. SIAM J Sci Comput 26(1):313–318MathSciNet CrossRef
    16.Zhang TH, Li XL, Tao DC, Yang J (2008) Local coordinates alignment (LCA): a novel method for manifold learning. Int J Pattern Recognit Artif Intell 22(4):667–690CrossRef
    17.Xiang SM, Nie FP, Xiang SM, Zhuang YT, Wang WH (2009) Nonlinear dimensionality reduction with local spline embedding. IEEE Trans Knowl Data Eng 21(9):1285–1298CrossRef
    18.He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving embedding. In: Proceedings of the IEEE international conference computer vision, pp 1208–1213
    19.He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using Laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340CrossRef
    20.Chen HT, Chang HW, Liu TL (2005) Local discriminant embedding and its variants. In: Proceedings of the conference on computer vision and pattern recognition, vol 2, pp 846–853
    21.Yan SC, Xu D, Zhang BY, Zhang HJ (2005) Graph embedding: a general framework for dimensionality reduction. In: Proceedings of the conference on computer vision and pattern recognition, vol 2, pp 20–25
    22.Cai D, He XF, Zhou K (2007) Locality sensitive discriminant analysis. In: Proceedings of the conference on artificial intelligence, pp 708–713
    23.Vapnik V (1995) The nature of statistical learning theory. Springer, New YorkCrossRef MATH
    24.The ORL face database. http://​www.​cl.​cam.​ac.​uk/​research/​dtg/​attarchive/​facedatabase.​html . Accessed 2004
    25.The Yale face database. http://​cvc.​yale.​edu/​projects/​yalefaces/​yalefaces.​html . Accessed 2004
    26.Seung HS, Lee DD (2000) The manifold ways of perception. Science 290:2258–2259CrossRef
    27.Zhang J, Li SZ, Wang J (2004) Manifold learning and applications in recognition. In: Intelligent multimedia processing with soft computing, vol 168, pp 281–300
    28.Li B, Huang DS (2008) Locally linear discriminant embedding: an efficient method for face recognition. Pattern Recognit 41(12):3813–3821CrossRef MATH
    29.Pang YW, Yu NH, Li HQ et al (2005) Face recognition using neighborhood preserving projections. In: Proceedings of pacific-rim conference on multimedia, vol 3768, pp 854–864
    30.Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157–165CrossRef
    31.Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155MathSciNet
    32.The facial recognition technology (FERET) database. http://​www.​itl.​nist.​gov/​iad/​humanid/​feret/​feret_​master.​html . Accessed 2008
    33.Zhang TH, Tao DC, Li XL, Yang J (2008) A unifying framework for spectral analysis based dimensionality reduction. In: Proceedings of the international joint conference on neural networks, pp 1670–1677
  • 作者单位:Guoqiang Wang (1)
    Nianfeng Shi (1)
    Yunxing Shu (1)
    Dianting Liu (2)

    1. Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, People’s Republic of China
    2. Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, 33124, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Complexity
    Artificial Intelligence and Robotics
    Electronic and Computer Engineering
    Operation Research and Decision Theory
  • 出版者:Springer Netherlands
  • ISSN:1573-773X
文摘
Manifold learning algorithms mainly focus on discovering the intrinsic low-dimensional manifold embedded in the high-dimensional Euclidean space. Among them, locally linear embedding (LLE) is one of the most promising dimensionality reduction methods. Though LLE holds local neighborhood information, it doesn’t fully take the label information and the global structure information into account for classification tasks. To enhance classification performance, this paper proposes a novel dimensionality reduction method for face recognition, termed embedded manifold-based kernel Fisher discriminant analysis, or EMKFDA for short. The goal of EMKFDA is to emphasize the local geometry structure of the data while utilizing the global discriminative structure obtained from linear discriminant analysis, which can maximize the between-class scatter and minimize the within-class scatter. In addition, by optimizing an objective function in a kernel feature space, nonlinear features can be extracted. Thus, EMKFDA, which combines manifold criterion and Fisher criterion, has better discrimination, and is more suitable for recognition tasks. Experiments on the ORL, Yale, and FERET face databases show the impressive performance of the proposed method. Results show that this proposed algorithm exceeds other popular approaches reported in the literature and achieves much higher recognition accuracy. Keywords Face recognition Dimensionality reduction Manifold learning Locally linear embedding Kernel discriminant analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700