Simultaneous determination of 18 d-amino acids in rat plasma by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method: application to explore the potential relationship be
详细信息    查看全文
  • 作者:Yuping Xing ; Xiaoyan Li ; Xingjie Guo ; Yan Cui
  • 关键词:d ; Amino acids ; Pre ; column derivatization ; UPLC ; MS/MS ; Alzheimer’s disease ; Biomarkers
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:408
  • 期:1
  • 页码:141-150
  • 全文大小:371 KB
  • 参考文献:1.Kirk A, Kertesz A (1991) On drawing impairment in Alzheimer’s disease. Arch Neurol 48:73–77CrossRef
    2.Pillon B, Deweer B, Aqid Y, Dubois B (1993) Explicit memory in Alzheimer’s, Huntington’s and Parkinson’s diseases. Arch Neurol 50:374–379CrossRef
    3.Greene JD, Baddeley AD, Hodges JR (1996) Analysis of the episodic memory deficit in early Alzheimer’s disease: evidence from the doors and people test. Neuropsychologia 34:537–551CrossRef
    4.Galton CJ, Patterson K, Xuereb JH, Hodges JR (2000) Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 123:484–498CrossRef
    5.Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356CrossRef
    6.Friedman M (2010) Origin, microbiology, nutrition, and pharmacology of d-amino acids. Chem Biodivers 7:1491–1530CrossRef
    7.Hamase K, Morikawa A, Zaitsu K (2002) D-Amino acids in mammals and their diagnostic value. J Chromatogr B 781:73–91CrossRef
    8.Irukayama-Tomobe Y, Tanaka H, Yokomizo T, Hashidate-Yoshida T, Yanagisawa M, Sakurai T (2009) Aromatic D-amino acids act as chemoattractant factors for human leukocytes through a G protein-coupled receptor, GPR109B. Proc Natl Acad Sci U S A 106:3930–3934CrossRef
    9.Ohide H, Miyoshi Y, Maruyama R, Hamase K, Konno R (2011) D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B 879:3162–3168CrossRef
    10.Fuchs SA, Berger R, Klomp LW, de Koning TJ (2005) D-Amino acids in the central nervous system in health and disease. Mol Genet Metab 85(3):168–180CrossRef
    11.Fisher GH, D'Aniello A, Vetere A, Padula L, Cusano GP, Man EH (1991) Free D-aspartate and D-alanine in normal and Alzheimer brain. Brain Res Bull 26(6):983–985CrossRef
    12.Hashimoto K, Fukushima T, Shimizu E, Okada SI, Komatsu N, Okamura N, Koike K, Koizumi H, Kumakiri C, Imai K, Iyo M (2004) Possible role of d-serine in the pathophysiology of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 28:385–388CrossRef
    13.Cui Y, Jiang Z, Sun J-Y, Yu J, Li M-H, Li M-J, Liu M-X, Guo X-J (2014) Enantiomeric purity determination of (L)-amino acids with pre-column derivatization and chiral stationary phase: development and validation of the method. Food Chem 158:401–407CrossRef
    14.Xie Y, Alexander GM, Schwartzman RJ, Singh N, Torjman MC, Goldberg ME, Wainer IW, Moaddel R (2014) Development and validation of a sensitive LC-MS/MS method for the determination of D-serine in human plasma. J Pharm Biomed Anal 89:1–5CrossRef
    15.Guideline on bioanalytical method validation. http://www.ema.europa.eu/docs/en.GB/document−library/Scientific−guideline/2011/08/WC500109686.pdf
    16.Giuliani D, Mioni C, Altavilla D, Leone S, Bazzani C, Minutoli L, Bitto A, Cainazzo MM, Marini H, Zaffe D, Botticelli AR, Pizzala R, Savio M, Necchi D, Schiöth HB, Bertolini A, Squadrito F, Guarini S (2006) Both early and delayed treatment with melanocortin 4 receptor-stimulating melanocortins produces neuroprotection in cerebral ischemia. Endocrinology 147:1126–1135CrossRef
    17.Giuliani D, Zaffe D, Ottani A, Spaccapelo L, Galantucci M, Minutoli L, Bitto A, Irrera N, Contri M, Altavilla D, Botticelli AR, Squadrito F, Guarini S (2011) Treatment of cerebral ischemia with melanocortin MC4 receptor agonists induces marked neurogenesis and long-lasting functional recovery. Acta Neuropathol 122:443–453CrossRef
    18.Guidance for industry, bioanalytical method validation (updated), 2001 http://​www.​fda.​gov/​downloads/​Drugs/​GuidanceComplian​ceRegulatoryInfo​rmation/​Guidances/​UCM070107.​pdf
    19.Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 102:5606–5611CrossRef
    20.Wu J, Anwyl R, Rowan MJ (1995) beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport 6:2409–2413CrossRef
    21.Peng TI, Jou MJ, Sheu SS, Greenamyre JT (1998) Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp Neurol 149:1–12CrossRef
    22.Mothet JP, Rouaud E, Sinet PM, Potier B, Jouvenceau A, Dutar P, Videau C, Epelbaum J, Billard JM (2006) A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5:267–274CrossRef
    23.Wolosker H, Dumin E, Balan L, Foltyn VN (2008) D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J 275:3514–3526CrossRef
    24.Panatier A, Theodosis DT, Mothet JP, Touquet B, Polleqioni L, Poulain DA, Oliet SH (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784CrossRef
    25.Billard JM (2008) D-Serine signalling as a prominent determinant of neuronal-glial dialogue in the healthy and diseased brain. J Cell Mol Med 12:1872–1884CrossRef
    26.D’Aniello A, Lee JM, Petrucelli L, Di Fiore MM (1998) Regional decreases of free D-aspartate levels in Alzheimer’s disease. Neurosci Lett 250:131–134CrossRef
    27.Di Maria E, Bonvicini C, Bonomini C, Alberici A, Zanetti O, Gennarelli M (2009) Genetic variation in the G720/G30 gene locus (DAOA) influences the occurrence of psychotic symptoms in patients with Alzheimer’s disease. J Alzheimers Dis 18:953–960
    28.Boks MP, Rietkerk T, van de Beek MH, Sommer IE, de Koning TJ, Kahn RS (2007) Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. Eur Neuropsychopharmacol 17:567–572CrossRef
    29.Miyoshi Y, Hamase K, Okamura T, Konno R, Kasai N, Tojo Y, Zaitsu K (2011) Simultaneous two-dimensional HPLC determination of free D-serine and D-alanine in the brain and periphery of mutant rats lacking D-amino-acid oxidase. J Chromatogr B 879:3184–3189CrossRef
    30.Chamond N, Cosson A, Coatnoan N, Minoprio P (2009) Proline racemases are conserved mitogens: characterization of a Trypanosoma vivax proline racemase. Mol Biochem Parasitol 165:170–179CrossRef
    31.Hamase K, Takagi S, Morikawa A, Konno R, Niwa A, Zaitsu K (2006) Presence and origin of large amounts of D-proline in the urine of mutant mice lacking D-amino acid oxidase activity. Anal Bioanal Chem 386:705–711CrossRef
    32.Hamase K, Inoue T, Morikawa A, Konno R, Zaitsu K (2001) Determination of free D-proline and D-leucine in the brains of mutant mice lacking D-amino acid oxidase activity. Anal Biochem 298:253–258CrossRef
    33.Errico F, Napolitano F, Nisticò R, Usiello A (2012) New insights on the role of free D-aspartate in the mammalian brain. Amino Acids 43:1861–1871CrossRef
    34.Billard JM (2012) D-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids 43:1851–1860CrossRef
  • 作者单位:Yuping Xing (1)
    Xiaoyan Li (1)
    Xingjie Guo (1)
    Yan Cui (1)

    1. School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
d-Amino acids are increasingly being recognized as important signaling molecules, and abnormal levels of d-amino acids have been implicated in the pathogenesis of Alzheimer’s disease. To evaluate the potential relationship between Alzheimer’s disease and d-amino acids, a simple, sensitive, and reliable UPLC-MS/MS method with pre-column derivatization was developed and validated for simultaneous determination of 18 d-amino acids in rat plasma. The analytes were extracted from plasma samples by a protein precipitation procedure, and then derivatized with (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester [(S)-NIFE]. Chromatographic separation was achieved using an ACQUITY UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with a mobile phase composed of acetonitrile containing 8 mM ammonium hydrogen carbonate at a flow rate of 0.6 mL min−1. The analytes were detected by electrospray ionization in positive ion multiple reaction monitoring modes. Under the optimum experimental conditions, all the linear regressions were acquired with r > 0.9932. The limits of quantitation of all derivatized d-amino acids were within 0.05–40.0 ng mL−1 in rat plasma. The intra- and inter-day precisions, expressed as percentage relative standard deviations (%RSD), were within the range of 12.3 and 10.1 %, respectively. The recoveries for all the analytes were observed over the range of 82.8–100.5 % with RSD values less than 12.5 %. Finally, the proposed method was successfully applied to simultaneous determination of the 18 d-amino acids in plasma from Alzheimer’s disease rats and age-matched normal controls. Results showed that the concentrations of d-serine, d-aspartate, d-alanine, d-leucine, and d-proline in Alzheimer’s disease rat plasma were significantly decreased compared with those in normal controls, while d-phenylalanine levels increased. It was revealed that some of these d-amino acids would be potential diagnostic biomarkers for Alzheimer’s disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700