Triple mutated antibody scFv2F3 with high GPx activity: insights from MD, docking, MDFE, and MM-PBSA simulation
详细信息    查看全文
  • 作者:Quan Luo (1)
    Chunqiu Zhang (1)
    Lu Miao (1)
    Dongmei Zhang (1)
    Yushi Bai (1)
    Chunxi Hou (1)
    Junqiu Liu (1)
    Fei Yan (2)
    Ying Mu (2)
    Guimin Luo (2)
  • 关键词:Abzyme ; GPx mimic ; Docking ; MD simulation ; MDFE simulation ; MM ; PBSA
  • 刊名:Amino Acids
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:44
  • 期:3
  • 页码:1009-1019
  • 全文大小:823KB
  • 参考文献:1. Bashford D, Case DA (2000) Generalized born models of macromolecular solvation effects. Annu Rev Phys Chem 51:129-52 CrossRef
    2. Battin EE, Brumaghim JL (2009) Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55:1-3 CrossRef
    3. Bhabak KP, Mugesh G (2010) Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 43:1408-419 CrossRef
    4. Braman J, Papworth C, Greener A (1996) Site-directed mutagenesis using double-stranded plasmid DNA templates. Methods Mol Biol 57:31-4
    5. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794-04
    6. Esworthy RS, Swiderek KM, Ho YS, Chu FF (1998) Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. Biochim Biophys Acta 1381:213-26 CrossRef
    7. Frisch MJ, Trucks GW, Schlegel HB (2003) Gaussian 03 (Revision A.1) Gaussian Pittsburgh
    8. Fujiwara S, Amisaki T (2008) Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method. Biophys J 94:95-03 CrossRef
    9. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714-723 CrossRef
    10. Huang X, Liu XM, Luo Q, Liu JQ, Shen JC (2011) Artificial selenoenzymes: designed and redesigned. Chem Soc Rev 40:1171-184 CrossRef
    11. Huber RE, Criddle RS (1967) Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys 122:164-73 CrossRef
    12. Hummer G, Szabo A (1996) Calculation of free-energy differences from computer simulations of initial and final states. J Chem Phys 105:2004-010 CrossRef
    13. Kollman P (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Reviews 93:2395-417 CrossRef
    14. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889-97 CrossRef
    15. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283-91 CrossRef
    16. Li LW, Uversky NV, Dunker K, Meroueh SO (2007) A computational investigation of allostery in the catabolite activator protein. J Am Chem Soc 129:15668-5676 CrossRef
    17. Liu JQ, Luo GM, Mu Y (2012) Selenoproteins and mimics. Springer, Berlin
    18. Lu SY, Jiang YJ, Zou JW, Wu TX (2012) Effect of double mutations K214/A-E215/Q of FRATide on GSK3β: insights from molecular dynamics simulation and normal mode analysis. Amino Acids 43:267-77 CrossRef
    19. Luo Q, Han WW, Zhou YH, Yao Y, Li ZS (2008) The 3D structure of the defense-related rice protein Pir7b predicted by homology modeling and ligand binding studies. J Mol Model 14:559-69 CrossRef
    20. Luo Q, Zhou YH, Yao Y, Li ZS (2010) Theoretical design of catalytic domain of abzyme Se-scFv2F3 by introducing a catalytic triad. Chem Res Chin Univ 26:118-21
    21. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83-5 CrossRef
    22. Maiorino M, Aumann KD, Brigelius-Flohé R, Doria D, van den Heuvel J, McCarthy J, Roveri A, Ursini F, Flohé L (1995) Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hoppe-Seyler 376:651-60 CrossRef
    23. Maiorino M, Aumann KD, Brigelius-Flohé R, Doria D, van den Heuvel J, McCarthy J, Roveri A, Ursini F, Flohé L (1998) Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis. Z Ernahrungswiss 37:118-21
    24. Matés JM, Pérez-Gómez C, Nú?ez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595-03 CrossRef
    25. Pastor RW, Brooks BR, Szabo A (1988) An analysis of the accuracy of Langevin and molecular dynamics algorithms. A Mol Phys 65:1409-419 CrossRef
    26. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Prot Chem 66:27-5 CrossRef
    27. Ren X, Gao S, You D, Huang H, Liu Z, Mu Y, Liu J, Zhang Y, Yan G, Luo G, Yang T, Shen J (2001) Cloning and expression of a single-chain catalytic antibody that acts as a glutathione peroxidase mimic with high catalytic efficiency. Biochem J 359:369-74 CrossRef
    28. Scheerer P, Borchert A, Krauss N, Wessner H, Gerth C, H?hne W, Kuhn H (2007) Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4). Biochemistry 46:9041-049 CrossRef
    29. Simmerling C, Strockbine B, Roitberg AE (2002) All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc 124:11258-1259 CrossRef
    30. Simonson T, Carlsson J, Case DA (2004) Proton binding to proteins: pKa calculations with explicit and implicit solvent models. J Am Chem Soc 126:4167-180 CrossRef
    31. Stanfield RL, Wilson IA (1994) Antigen-induced conformational changes in antibodies: a problem for structural prediction and design. Trends Biotechnol 12:275-79 CrossRef
    32. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028
    33. Thomas JP, Maiorino M, Ursing F, Girutti AW (1990) Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem 265:454-61
    34. Toppo S, Flohé L, Ursini F, Vanin S, Maiorino M (2009) Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 1790:1486-500 CrossRef
    35. Tuccinardi T, Manetti F, Schenone S, Martinelli A, Botta M (2007) Construction and validation of a RET TK Catalytic domain by homology modeling. J Chem Inf Model 47:644-55 CrossRef
    36. Wilson SR, Zucker PA, Huang RRC, Spector A (1989) Development of synthetic compounds with glutathione peroxidase activity. J Am Chem Soc 111:5936-939 CrossRef
    37. Wu ZP, Hilvert B (1990) Selenosubtilisin as a glutathione peroxidase mimic. J Am Chem Soc 112:5647-648 CrossRef
  • 作者单位:Quan Luo (1)
    Chunqiu Zhang (1)
    Lu Miao (1)
    Dongmei Zhang (1)
    Yushi Bai (1)
    Chunxi Hou (1)
    Junqiu Liu (1)
    Fei Yan (2)
    Ying Mu (2)
    Guimin Luo (2)

    1. State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
    2. Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, People’s Republic of China
  • ISSN:1438-2199
文摘
By combining computational design and site-directed mutagenesis, we have engineered a new catalytic ability into the antibody scFv2F3 by installing a catalytic triad (Trp29–Sec52–Gln72). The resulting abzyme, Se-scFv2F3, exhibits a high glutathione peroxidase (GPx) activity, approaching the native enzyme activity. Activity assays and a systematic computational study were performed to investigate the effect of successive replacement of residues at positions 29, 52, and 72. The results revealed that an active site Ser52/Sec substitution is critical for the GPx activity of Se-scFv2F3. In addition, Phe29/Trp–Val72/Gln mutations enhance the reaction rate via functional cooperation with Sec52. Molecular dynamics simulations showed that the designed catalytic triad is very stable and the conformational flexibility caused by Tyr101 occurs mainly in the loop of complementarity determining region 3. The docking studies illustrated the importance of this loop that favors the conformational shift of Tyr54, Asn55, and Gly56 to stabilize substrate binding. Molecular dynamics free energy and molecular mechanics-Poisson Boltzmann surface area calculations estimated the pK a shifts of the catalytic residue and the binding free energies of docked complexes, suggesting that dipole–dipole interactions among Trp29–Sec52–Gln72 lead to the change of free energy that promotes the residual catalytic activity and the substrate-binding capacity. The calculated results agree well with the experimental data, which should help to clarify why Se-scFv2F3 exhibits high catalytic efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700