Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3
详细信息    查看全文
  • 作者:Omid Zabihi (1)
    Abdollah Omrani (1) omrani@umz.ac.ir
    Abbas Ali Rostami (1)
  • 关键词:Thermal degradation kinetics – ; Kinetic models – ; Epoxy nanocomposite – ; TG
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:108
  • 期:3
  • 页码:1251-1260
  • 全文大小:813.6 KB
  • 参考文献:1. Brown JM, Curliss D, Vaia RA. Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem Mater. 2000;12(11):3376–84.
    2. Roman F, Montserrat S, Hutchinson JM. On the effect of montmorillonite in the curing reaction of epoxy nanocomposites. J Therm Anal Calorim. 2007;87(1):113–8.
    3. Pages P, Lacorte T, Lipinska M, Carrasco F. Study of curing of layered silicate/trifunctional epoxy nanocomposites by means of FTIR spectroscopy. J Appl Polym Sci. 2008;108(4):2107–15.
    4. Tsotsis TK. Thermo-oxidative aging of composite materials. J Compos Mater. 1995;29(3):410–22.
    5. Fan J, Hu X, Yue CY. Thermal degradation study of interpenetrating polymer network based on modified bismaleimide resin and cyanate ester. Polym Int. 2003;52:15–22.
    6. Liu YL, Wei WL, Hsua KY, Ho WH. Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta. 2004;412:139–47.
    7. Aijuan G, Guozheng L. Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocomposites. Polym Degrad Stab. 2003;80:383–91.
    8. Sameer SR, Mauro Z, Szabolcs M, Krzysztof KK, Alan HW, Marc N, Takashi K, Jeffrey WG. Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym Degrad Stab. 2010;95:870–9.
    9. Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL. Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phy Chem Solids. 2010;71:539–43.
    10. Budrugeac P. Thermal degradation of glass reinforced epoxy resin and polychloroprene rubber: the correlation of kinetic parameters of isothermal accelerated aging with those obtained from non-isothermal data. Polym Degrad Stab. 2001;74:125–32.
    11. Chatterjee A, Islam MS. Fabrication and characterization of TiO2–epoxy nanocomposite. Mater Sci Eng A. 2008;487:574–85.
    12. Sanctuary R, Baller J, Zielinski B, Becker N, Kr眉ger JK, Philipp M, M眉ller U, Ziehmer M. Influence of Al2O3 nanoparticles on the isothermal cure of an epoxy resin. J Phys Condens Matter. 2009;21(3):035118.
    13. Vassileva E, Friedrich K. Epoxy/alumina nanoparticle composites. II. Influence of silane coupling agent treatment on mechanical performance and wear resistance. J Appl Polym Sci. 2006;101:4410–7.
    14. Baller B, Thomassey M, Ziehmer M, Sanctuary R. The catalytic influence of alumina nanoparticles on epoxy curing. Thermochim Acta. 2011;517(1–2):34–9.
    15. Nunez L, Fraga F, Fraga L, Rodriguez JA. Activation energies and rate constants for an epoxy/cure agent reaction. Variation in peak exotherm temperature. J Therm Anal. 1996;47:743–50.
    16. Ma S, Hill JO, Heng S. A kinetic analysis of the pyrolysis of some Australian coals by non-isothermal thermogravimetry. J Therm Anal. 1991;37:1161–77.
    17. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–7.
    18. Montserrat S, Malek J, Colomer P. Thermal degradation kinetics of epoxy–anhydride resins: I. Influence of a silica filler. Thermochim Acta. 1998;31:83–93.
    19. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.
    20. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci. 1966;4:323–42.
    21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.
    22. Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77–9.
    23. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–75.
    24. Van Krevelen DW, Van Heerden C, Huntjons FJ. Physicochemical aspects of the pyrolysis of coal and related organic compounds. Fuel. 1951;30:253–8.
    25. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35(10):1464–8.
    26. Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.
    27. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–7.
    28. Hatakeyama T, Quinn FX. Thermal analysis: fundamentals and applications to polymer science. London: Wiley; 1999.
    29. Zheng P, Li S, Huang M, Xu K, Wang C, Li P, Chen X. Thermogravimetric analysis of methyl methacrylate-graft-natural rubber. J Appl Polym Sci. 2002;85:2952–5.
    30. Flynn JH. Degradation kinetics applied to lifetime predictions of polymers. Polym Eng Sci. 1980;20:675–7.
    31. Flynn JH. Thermal analysis kinetics-problems, pitfalls and how to deal with them. J Therm Anal. 1988;34:367–81.
    32. Ozawa T, Kato T. A simple method for estimating activation energy from derivative thermoanalytical curves and its application to thermal shrinkage of polycarbonye. J Therm Anal. 1991;37:1299–307.
    33. Nunez L, Fraga F, Nunez MR, Castro A, Fraga L. Effects of diffusion on the kinetic study of the system BADGE n = 0/m-xylylenediamine. J Appl Polym Sci. 1999;74:2997–3005.
    34. Jimenez A, Berenguer V, Lopez L, Sanchez A. Thermal degradation study of poly(vinyl chloride): kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1993;50:1565–73.
    35. Villanueva M, Mart铆n-Iglesias JL, Rodr铆guez-An贸n JA, Proup铆n-Castineiras J. Thermal study of an epoxy system DGEBA (n = 0)/MXDA with POSS. J Therm Anal. 2009;96:575–82.
  • 作者单位:1. Faculty of Chemistry, University of Mazandaran, P.O. Box 453, Babolsar, Mazandaran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
We have synthesized epoxy nanocomposites with various percents of nanoalumina by using ultrasonic dispersion treatment. Scanning calorimetry studies revealed that the composition having 1% nanoalumina results in the highest value of cross-link density as evidenced by the glass transition temperature (T g). Thermal degradation of the systems consisting of diglycidyl ether bisphenol A (DGEBA)/1,3-Poropane diamine and with 1% and without nanoalumina were studied by thermogravimetry analysis to determine the reaction mechanism in air. The obtained results indicated that a relatively low concentration of nanoalumina led to an impressive improvement of thermal stability of epoxy resin. The Coats–Redfern, Van Krevelen, Horowitz–Metzger, and Criado methods were utilized to find the solid state thermal degradation mechanism. Analysis of our experimental results suggests that the reaction mechanism is depending on the applied thermal history. For the nanocomposite, the mechanism was recognized to be one-dimensional diffusion (D1) reaction at low heating rates and it changes to be a random nucleation process with one nucleus on the individual particle (F1) at high heating speeds. The results also indicated that the degradation mechanism of organic phase is influenced by the presence of inorganic nanofiller.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700