Study on a novel thermoset nanocomposite form DGEBA–cycloaliphatic diamine and metal nanoparticles
详细信息    查看全文
  • 作者:Omid Zabihi (1)
    Mehran Aghaie (2)
    Karim Zare (1)
  • 关键词:Thermoset ; Epoxy resin ; Metal nanoparticles ; Thermal properties ; Sestak–Berggren equation
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:111
  • 期:1
  • 页码:703-710
  • 全文大小:580KB
  • 参考文献:1. Rotello V. In Nanoparticles: building blocks for nanotechnology. New York: Kluwer Academic/Plenum Publishers; 2004. p. 174-82.
    2. Xu Y, Sun HB, Ye JY, Matsuo S, Misawa H. Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips. J Opt Soc Am B. 2001;18:1084-1. CrossRef
    3. Haes AJ, Zou S, Schatz GC, Van Duyne RP. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108:6961-. CrossRef
    4. Thurn-Albrecht T, Schotter J, Kstle GA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science. 2000;290:2126-. CrossRef
    5. Delamarche E, Geissler M, Vichiconti J, Graham WS, Andry PA, Flake JC, Fryer PM, Nunes RW, Michel B, J. O’Sullivan E, Schmid H, Wolf H, Wisnieff RL. Electroless deposition of NiB on 15 inch glass substrates for the fabrication of transistor gates for liquid crystal displays. Langmuir. 2003;19:5923-5. CrossRef
    6. Cizmecioglu M, Gupta A, Fedors RF. Influence of cure conditions on glass transition temperature and density of an epoxy resin. J Appl Polym Sci. 1986;32:6177-0. CrossRef
    7. Meyer F, Sanz G, Eceiza A, Mondragon I. The effect of stoichiometry and thermal history during cure on structure and properties of epoxy networks. Polymer. 1995;36(7):1407-4. CrossRef
    8. Naito C, Todd M. The effects of curing parameters on the properties development of an epoxy encapsulant material. Microelectron Reliab. 2002;42:119-5. CrossRef
    9. Prime RB. In: Turi EA, editor. Thermal characterization of polymeric materials. New York: Academic press; 1981.
    10. Shigue CY, Rafaela GS, Baldan CA, Ruppert-Filho E. Monitoring the epoxy curing by the dielectric thermal analysis method. IEEE Trans Appl Superconduct. 2004;4:1173-. CrossRef
    11. Wan J, Fan H, Li BG, Xu CJ, Bu ZY. Synthesis and nonisothermal reaction of a novel acrylonitrile-capped poly(propyleneimine) dendrimer with epoxy resin. J Therm Anal Calorim. 2011;103:685-2. CrossRef
    12. Guo Q, Huang Y, Zhang Y-Y, Zhu L-R, Zhang B-L. Curing behavior of epoxy resins with a series of novel curing agents containing 4,40-biphenyl and varying methylene units. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-0764-2 .
    13. Ghaemy M, Behmadi H. Study of cure kinetics of DGEBA with optically active curing agents. J Therm Anal Calorim. 2010. doi: 10.1007/s10973-010-0812-y .
    14. Fraga I, Hutchinson J, Montserrat S. Vitrification and devitrification during the non-isothermal cure of a thermoset. J Therm Anal Calorim. 2010;99:925-. CrossRef
    15. Thomas R, Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, et al. Cure kinetics, morphology and miscibility of modified DGEBA based epoxy resin–effects of a liquid rubber inclusion. Polymer. 2007;48:1695-10. CrossRef
    16. Fernandez X, Ramis X, Salla JM. Cationic copolymerization of cycloaliphatic epoxy resin with an spirobislactone with lanthanum triflate as initiator kinetics of the curing process. Thermochim Acta. 2005;438:144-4. CrossRef
    17. Montserrat S, Flaque C, Pages P, Malek J. Effect of the crosslinking degree on curing kinetics of an epoxy-anhydride system. J Appl Polym Sci. 1995;56:1413-1. CrossRef
    18. Zabihi O, Omrani A, Rostami AA. Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1945-3 .
    19. Ramezanzadeh B, Attar MM, Farzam M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103:731-. CrossRef
    20. Zabihi O, Mostafavi SM, Ravari F, Khodabandeh A, Hooshafza A, Zare K, Shahizadeh M. The effect of zinc oxide nanoparticles on thermo-physical properties of diglycidyl ether of bisphenol A/2,2-diamino-1,1-binaphthalene nanocomposites. Thermochim Acta. 2011;521:49-8. CrossRef
    21. Alzina C, Sbirrazzuoli N, Mija A. New method for calculating kinetics parameters with non-isothermal data of epoxy polymer and layered silicate nanocomposites. J Phys Chem B. 2010;114:12480-. CrossRef
    22. Wu Q, Zhang C, Liang R, Wang B. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. J Therm Anal Calorim. 2010;100:1009-5. CrossRef
    23. Villanueva M, Martin-Iglesias J, Rodriguez-Anon J, Proupin-Castineiras J. Thermal study of an epoxy system DGEBA ( / n?=?0)/mXDA modified with POSS. J Therm Anal Calorim. 2009;96:575-2. CrossRef
    24. Wu Q, Bao J, Zhang C, Liang R, Wang B. The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. J Therm Anal Calorim. 2011;103:237-2. CrossRef
    25. Schroeder JA, Madsen PA, Foister RT. Structure/property relationships for a series of crosslinked aromatic/aliphatic epoxy mixtures. Polymer. 1987;28:929-0. CrossRef
    26. Fernandez-Nograro F, Valea A, Llano-Ponte R, Mondragon I. Dynamic and mechanical properties of DGEBA/poly(propylene oxide) amine based epoxy resins as a function of stoichiometry. Eur Polym J. 1996;32:257-6. CrossRef
    27. Nakka JS, Jansen KMB, Ernst LJ, Jager WF. Effect of the epoxy resin chemistry on the viscoelasticity of its cured product. J Appl Polym Sci. 2008;108:1414-0. CrossRef
    28. Shabeer A, Garg A, Sundararaman S, Chandrashekhara K, Flanigan V, Kapila S. Dynamic mechanical characterization of a soy based epoxy resin system. J Appl Polym Sci. 2005;98:1772-0. CrossRef
    29. Gerbase A, Petzhold C, Costa A. Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J Am Oil Chem Soc. 2002;79:797-02. CrossRef
    30. Gerard JF, Galy J, Pascault JP, Cukierman S, Halary JL. Viscoelastic response of model epoxy networks in the glass transition region. Polym Eng Sci. 1991;31:615-1. CrossRef
    31. Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377-5. CrossRef
    32. Avrami M. Kinetics of phase change, granulation, phase change and microstructure. J Chem Phys. 1941;9:177-4. CrossRef
    33. Sestak J. Thermophyscial properties of solids. In: Svehla G, editor. Comprehensive analytical chemistry. Amsterdam: Elsevier; 1984.
    34. Bamford CH, Tipper CFH, editors. Comprehensive chemical kinetics. New York: Elsevier; 1980.
    35. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid state reactions at increasing temperatures. Thermochim Acta. 1971;3:1-2. CrossRef
    36. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301-4. CrossRef
    37. Crane LW, Dynes PJ, Kaelable DH. Analysis of curing kinetics in polymer composites. J Polym Sci Polym Lett Ed. 1973;11:533-0. CrossRef
    38. Kissinger Homer E. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702-. CrossRef
    39. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393-02. CrossRef
    40. Zhang YX, Vyazovkin S. Comparative cure behavior of DGEBA and DGEBP with 4-nitro-1,2 phenylenediamine. Polymer. 2006;47:6659-3. CrossRef
    41. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445-. CrossRef
    42. Malek J. The kinetic analysis of non isothermal data. Thermochim Acta. 1992;200:257-9. CrossRef
    43. Stutz H, Mertes J, Neubecker K. Kinetics of thermoset cure and polymerization in the glass transition region. J Polymer Sci A. 1993;31:1879-6. CrossRef
    44. Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta. 2002;388:289-8. CrossRef
  • 作者单位:Omid Zabihi (1)
    Mehran Aghaie (2)
    Karim Zare (1)

    1. Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
    2. Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
  • ISSN:1572-8943
文摘
The thermo-physical properties of diglycidyl ether of bisphenol A (DGEBA)/isophoronediamine (IPDA) with iron nanoparticles were investigated using DSC, DMT, and TG analysis. Because of the higher values of the glass transition, it is recognized that the optimum behavior of the three-component system corresponds to the 10% loading level of iron nanoparticles. The addition of iron nanoparticles into the epoxy matrix resulted in a significant increment in the storage modulus and crosslink density. Also, the DGEBA/IPDA/10% iron nanoparticles showed an enhanced thermal stability owing to the introduction of iron nanoparticles as reinforcing filler. Curing reaction of DGEBA/IPDA with 10% iron nanoparticles was investigated by DSC at dynamic mode. Activation energy was calculated based on Kissinger method (66.52?kJ?mol?). Also, the advanced isoconversional method is utilized to describe the curing reaction process. In the dynamic DSC analyses, the curing kinetics could be successfully described with the two-parameter autocatalytic model (Sěsták–Berggren equation) and the overall reaction order was about 2.78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700