Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles
详细信息    查看全文
  • 作者:Omid Zabihi (1)
    Aminreza Khodabandeh (1)
  • 关键词:Polythiophene ; Nanoparticles ; Thermal degradation ; Solid ; state mechanism ; Master curves
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:112
  • 期:3
  • 页码:1507-1513
  • 全文大小:569KB
  • 参考文献:1. Jablonski AE, Lang AJ, Vyazovkin S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta. 2008;474:78-0. CrossRef
    2. Santon AF, Polese L, Crespi MS, Ribeiro CA. Kinetic model of poly (3-hydroxybutyrate) thermal degradation from experimental non-isothermal data. J Therm Anal Calorim. 2009;96:287-1. CrossRef
    3. Vyazovkin S, Wigh CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:8279-4. CrossRef
    4. Carrasco F, Pages P. Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym Degrad Stab. 2008;93:1000-. CrossRef
    5. Zabihi O, Omrani A, Rostami AA. Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3. J Therm Anal Calorim. 2012;108:1251-0.
    6. Tsotsis TK. Thermo-oxidative aging of composite materials. J Compos Mater. 1995;29:410-2. CrossRef
    7. Ocampoa C, Armelina E, Liesab F, Alemána C, Ramisc X, Iribarren JI. Application of a polythiophene derivative as anticorrosive additive for paints. Prog Org Coat. 2005;53:217-4. CrossRef
    8. Bouguettaya M, Vedie N, Chevrot C. New conductive adhesive based on poly(3,4-ethylene dioxythiophene). Synth Met. 1999;102:1428-1. CrossRef
    9. Zabihi O, Khodabandeh A, Mostafavi SM. Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym Degrad Stab. 2012;97:3-3. CrossRef
    10. Tsotra P, Gatos KG, Gryshchuk O, Friedrich K. Hardener type as critical parameter for the electrical properties of epoxy resin/polyaniline blends. J Mater Sci. 2005;40:569-4. CrossRef
    11. Jang J, Bae J, Lee K. Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer. 2005;46:3677-4. CrossRef
    12. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1-9. CrossRef
    13. Nunez L, Fraga F, Fraga L, Rodriguez JA. Activation energies and rate constants for an epoxy/cure agent reaction variation in peak exotherm temperature. J Therm Anal. 1996;47:743-0. CrossRef
    14. Hatakeyama T, Quinn FX. Thermal analysis: fundamentals and applications to polymer science. London: Wiley; 1999. p. 79-0.
    15. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1-2. CrossRef
    16. Montserrat S, Malek J, Colomer P. Thermal degradation kinetics of epoxy–anhydride resins. I. Influence of a silica filler. Thermochim Acta. 1998;313:83-5. CrossRef
    17. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702-. CrossRef
    18. Ozawa T, Kato T. A simple method for estimating activation energy from derivative thermoanalytical curves and its application to thermal shrinkage of polycarbonate. J Therm Anal. 1991;37:1299-07. CrossRef
    19. Flynn JH. Thermal analysis kinetics-problems, pitfalls and how to deal with them. J Therm Anal. 1988;34:367-1. CrossRef
    20. Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77-. CrossRef
    21. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393-02. CrossRef
    22. Zhang YX, Vyazovkin S. Comparative cure behavior of DGEBA and DGEBP with 4-nitro-1,2 phenylenediamine. Polymer. 2006;47:6659-3. CrossRef
    23. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445-. CrossRef
    24. Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377-5. CrossRef
    25. Criado JM, Perez-Maqueda LA, Gotor FJ, Malek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72:901-. CrossRef
    26. Perez-Maqueda LA, Criado JM, Gotor FJ, Malek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862-. CrossRef
    27. Paterson WL. Computation of the exponential trap population integral of glow curve theory. J Comput Phys. 1971;7(1):187-0. CrossRef
    28. Selsbo P, Ericsson I. Studies of the thermal degradation of polythiophenes by pyrolysis-gas chromatography. Polym Degrad Stab. 1996;51(1):83-2. CrossRef
    29. Chen F, Shi G, Zhang J, Fu M. Raman spectroscopic studies on the structural changes of electro synthesized polythiophene films during the heating and cooling processes. Thin Solid Films. 2003;424(2):283-0. CrossRef
    30. Tourillon G, Garnier F. Stability of conducting polythiophene and derivatives. J Electrochem Soc. 1983;130(10):2042-. CrossRef
    31. Mohammad F, Calvert PD, Billingham NC. Thermal stability of electrochemically prepared polythiophene and polypyrrole. Bull Mater Sci. 1995;18(3):255-1. CrossRef
    32. Paik P, Kar K. High molecular weight polypropylene nanospheres: synthesis and characterization. J Appl Polym Sci. 2007;105:1133-3. CrossRef
    33. Paik P, KarK K. High molecular weight polyethylene nanospheres: synthesis physical and mechanical properties. J Nanosci Nanotechnol. 2008;8(6):3123-5. CrossRef
  • 作者单位:Omid Zabihi (1)
    Aminreza Khodabandeh (1)

    1. Young Researchers Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • ISSN:1572-8943
文摘
The polythiophene nanoparticles (nano-PT) were prepared with average diameter of 20-5?nm. The nanostructurals of polythiophene were confirmed by TEM and SEM analyzes. The kinetics of the thermal degradation and thermal oxidative degradation of nano-PT were investigated by thermogravimetric analysis. Kissinger method, Flynn–Wall–Ozawa method, and advanced isoconversional method have been used to determine the activation energies of nano-PT degradation. The results showed that the thermal stability of nano-PT in pure N2 is higher than that in air atmosphere. The analyzes of the solid-state processes mechanism of nano-PT by Criado et al. method showed: the thermal degradation process of nano-PT goes to a mechanism involving second-order (F 2 mechanism); otherwise, the thermo-oxidative degradation process of nano-PT is corresponding to a phase boundary controlled reaction mechanism (R 2 mechanism).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700