Clonal growth architecture and spatial dynamics of 10 species of the genus Potamogeton across different habitats in Kashmir Valley, India
详细信息    查看全文
  • 作者:Aijaz Hassan Ganie ; Zafar A. Reshi ; B. A. Wafai ; Sara Puijalon
  • 关键词:Potamogeton ; Clonal architecture ; Standing and running waters ; Ramet ; Spacer length
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:767
  • 期:1
  • 页码:289-299
  • 全文大小:575 KB
  • 参考文献:Alpert, P., C. Holzapfel & C. Slominski, 2003. Differences in performance between genotypes of Fragaria chiloensis with different degrees of resource sharing. Journal of Ecology 91: 27–35.CrossRef
    Asaeda, T., T. Fujino & J. Manatunge, 2005. Morphological adaptations of emergent plants to water flow: a case study with Typha angustifolia, Zizania latifolia, Phragmites australis. Freshwater Biology 50: 1991–2001.CrossRef
    Bell, A. D., 1984. Dynamic morphology: a contribution to plant population ecology. In Dirzo, R. & J. Sarukham (eds), Perspective on Plant Population Ecology. Sinaurer Associates, Sunderland: 48–65.
    Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Science 73: 1–14.CrossRef
    Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 3: 249–257.CrossRef
    Callaghan, T. V., B. M. Svensson, H. Bowman, D. K. Lindley & B. A. Carlsson, 1990. Modes of clonal plant growth based on population dynamics and architecture. Oikos 57: 257–269.CrossRef
    Cornelissen, J. H. C., Y. Song, F. H. Yu & M. Dong, 2014. Plant traits and ecosystem effects of clonality: a new research agenda. Annals of Botany 114: 369–376.PubMedCentral CrossRef PubMed
    de Kroon, H. & M. J. Hutchings, 1995. Morphological plasticity in clonal plants: the foraging concept revisited. Journal of Ecology 83: 143–152.CrossRef
    Daehler, C. C., 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology Evolution and Systematics 34: 183–211.CrossRef
    D’Hertefeldt, T., J. M. Enestrom & L. B. Pettersson, 2014. Geographic and habitat origin influence biomass production and storage translocation in the clonal plant Aegopodium podagraria. Plos One 9: e85407.PubMedCentral CrossRef PubMed
    Doyle, R. D., 2001. Effect of waves on the early growth of Vallisneria americana. Freshwater Biology 46: 389–397.CrossRef
    Evette, A., A. Bédécarrats & G. Bornette, 2009. Environmental constraints influence clonal traits of herbaceous plant communities in an Alpine Massif. Folia Geobotanica 44: 95–108.CrossRef
    Funk, J. L., 2008. Differences in plasticity between invasive and native plants from a low resource environment. Journal of Ecology 96: 1162–1173.CrossRef
    Ganie, A. H., Z. A. Reshi & B. A. Wafai, 2008. Multiple reproductive strategies contribute to invasiveness of Potamogeton crispus L. (Potamogetonaceae) in fresh water ecosystems of Kashmir Himalaya, India. Proceedings of Taal 2007: The 12th World Lake Confrence: 1067–1073.
    Ganie, A. H., Z. A. Reshi & B. A. Wafai, 2012. A brief appraisal of the genus Potamogeton L. in Kashmir valley. In J. R. Bhatt, J. S. Singh, S. P. Singh, R. S. Tripathi & R. K. (eds), KohliInvasive Alian Plants- An ecological appraisal for Indian Subcontinent . CABI. Nosworthy Way Wallingford Oxford shire OX10 8DB UK.
    Ganie, A. H., Z. A. Reshi, B. A. Wafai & S. Puijalon, 2014. Phenotypic plasticity: cause of the successful spread of the genus Potamogeton in Kashmir Himalaya. Aquatic Botany 120: 283–289.CrossRef
    Grace, J. B., 1993. The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquatic Botany 44: 159–180.CrossRef
    Gray, A. J., 1986. Do invading species have definable genetic characteristics? Philosophical Transactions of the Royal Society B 314: 655–674.CrossRef
    Huber, H., S. Lukacs & M. A. Watson, 1999. Spatial structure of stoloniferous herbs: an interplay between structural blue-print, ontogeny and phenotypic plasticity. Plant Ecology 141: 107–115.CrossRef
    Ikegami, M., D. F. Whigham & M. J. A. Werger, 2007. Response of rhizome length and ramet production to resource availability in the clonal sedge Scirpus olneyi A.Gray. Plant Ecology 189: 247–259.CrossRef
    Jensen, S. & S. Bell, 2001. Seagrass growth and patch dynamics: cross-scale morphological plasticity. Plant Ecology 155: 201–217.CrossRef
    Kaplan, Z., 2002. Phenotypic plasticity in Potamogeton (Potamogetonaceae). Folia Geobotanica 37: 141–170.CrossRef
    Kaplan, Z., 2008. A taxonomic revision of Stuckenia (Potamogetonaceae) in Asia, with notes on the diversity and variation of the genus on a worldwide scale. Folia Geobotanica 43: 159–234.CrossRef
    Klimeš, L. & J. Klimešová, 1999. CLO-PLA 2 – a database of clonal plants in central Europe. Plant Ecol. 141: 9–19.CrossRef
    Klimešová, J., J. Doležal & M. Sammul, 2011. Evolutionary and organismic constraints on the relationship between spacer length and environmental conditions in clonal plants. Oikos 120: 1110–1120.CrossRef
    Klimešová, J. & L. Klimeš, 2007. Bud banks and their role in vegetative regeneration – a literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology, Evolution and Systematics 8: 115–129.CrossRef
    Klimešová, J. & L. Klimeš, 2008. Clonal growth diversity and bud banks of plants in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80: 255–275.
    Klimeš, L., J. Klimešová, R. Hendriks & J. van Groenendael, 1997. Clonal plant architecture: a comparative analysis of form and function. In de Kroon, H. & J. van Groenendael (eds), The ecology and evolution of clonal plants. Backhuys Publishers, Leiden: 1–29.
    Koivunen, S., K. Saikkonen, T. Vuorisalo & P. Mutikainen, 2004. Heavy metals modify cots of reproduction and clonal growth in the stoloniferous herb Potentilla anserina. Evolutionary Ecology 18: 541–561.CrossRef
    Kotschy, K. & K. Rogers, 2008. Reed clonal characteristics and response disturbance in a semi-arid rivers. Aquatic Botany 88: 47–56.CrossRef
    Kuusisto, E., 1996. Hydrological measurements. In Water Quality Monitoring – A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. UNEP/WHO Publication, New York.
    Lenssen, J. M. P., F. B. J. Menting, W. H. Van Der Putten & C. W. P. M. Blom, 2000. Vegetative reproduction by species with different adaptations to shallow-flooded habitats. New Phytologist 145: 61–70.CrossRef
    Latzel, V. & J. Klimešová, 2010. Trans generational plasticity in clonal plants. Evolutionary Ecology 24: 1537–1543.CrossRef
    Liu, Y., F. Schieving, J. F. Stuefer & N. P. R. Anten, 2007. The effects of mechanical stress and spectral shadding on the growth and allocation of ten genotypes of stoloniferous plant. Annals of Botany 99: 121–130.PubMedCentral CrossRef PubMed
    Lovett-Doust, L., 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus repens). I. The dynamics of ramets in contrasting habitats. Journal of Ecology 69: 743–755.CrossRef
    Niklas, K. J., 1996. Differences between Acer saccharum leaves from open and wind-protected sites. Annals of Botany 78: 61–66.CrossRef
    Pennings, S. C. & R. M. Callaway, 2000. The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology 81: 709–716.CrossRef
    Puijalon, S. & G. Bornette, 2006. Phenotypic plasticity and mechanical stress: biomass partitioning and clonal groswth of an aquatic plant species. American Journal of Botany 93: 1090–1099.CrossRef PubMed
    Puijalon, S., T. J. Bouma, J. Van Groenendeal & G. Bornette, 2008a. Clonal plasticity of aquatic plant species to mechanical stress: escape verse resistance strategy. Annals of Botany 102: 989–996.PubMedCentral CrossRef PubMed
    Puijalon, S., J. P. Léna, N. Riviere, J. Y. Champagne, J. C. Rostan & G. Bornette, 2008b. Phenotypic plasticity in response to mechanical stress: hydrodynamic performance and fitness of four aquatic plant species. New Phytologist 177: 907–917.CrossRef PubMed
    Puijalon, S., T. J. Bouma, C. J. Douady, J. van Groenendael, N. P. R. Anten, E. Martel & G. Bornette, 2011. Plant resistance to mechanical stress: evidence of an avoidance-tolerance trade-off. New Phytologist 191: 1141–1149.CrossRef PubMed
    Richards, C. L., O. Bossdorf, N. Z. Muth, J. Gurevitch & M. Pigliucci, 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letter 9: 981–993.CrossRef
    Richardson, D. M. & P. Pyšek, 2006. Plant invasions: merging the concepts of species invasiveness and community invisibility. Progress in Physical Geography 30: 409–431.CrossRef
    Sand-Jensen, K. & J. R. Mebus, 1996. Fine-scale patterns of water velocity within macrophyte patches in streams. Oikos 76: 169–180.CrossRef
    Song, Y. B., F. H. Yu, L. Keser, W. Dawson, M. Fischer, M. Dong & M. van Kleunen, 2013. United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171: 317–327.CrossRef PubMed
    Sosnová, M., R. van Diggelen & J. Klimešová, 2010. Distribution of clonal growth forms in wetlands. Aquatic Botany 92: 33–39.CrossRef
    Sosnová, M., R. van Diggelen & J. Klimešová, 2011. Distribution of clonal growth traits among wetlands habitats. Aquatic Botany 95: 88–93.CrossRef
    Sultan, S. E., 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537–542.CrossRef PubMed
    Sultan, S. E., 2003. Phenotypic plasticity in plants: a case study in ecological development. Evolution and Development 5: 25–33.CrossRef PubMed
    Sammul, M., 2011. Length of the spacer rather than its plasticity relates to species distribution in various natural habitats. Folia Geobotanica 46: 137–153.CrossRef
    Vogel, S., 1994. Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton.
    Weijschedé, J., R. Berentsen, H. de Kroon & H. Huber, 2008. Variation in petiole and internode length affects plant performance in Trifolium repens under opposing selection regimes. Evolutionary Ecology 22: 383–397.CrossRef
    Williams, D. G., N. M. Richard & R. A. Black, 1995. Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology 76: 1569–1580.CrossRef
    Wolfer, S. R. & D. Straile, 2004. Saptio-temporal dynamics and plasticity of clonal architecture in Potamogeton perfoliatus. Aquatic Botany 78: 307–318.CrossRef
    Xu, L., F. H. Yu, E. van Drunen, F. Schieving, M. Dong & N. P. R. Anten, 2012. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree. Annals of Botany 109: 1001–1008.PubMedCentral CrossRef PubMed
    Xu, L., H. Huber, H. J. During, M. Dong & N. P. R. Anten, 2013. Intraspecific variation of a desert shrub species in phenotypic plasticity in response to sand burial. New Phytologist 199: 991–1000.CrossRef PubMed
    Ye, X. H., F. H. Ye & M. Dong, 2006. A trade off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Annals of Botany 98: 187–191.PubMedCentral CrossRef PubMed
  • 作者单位:Aijaz Hassan Ganie (1)
    Zafar A. Reshi (1)
    B. A. Wafai (1)
    Sara Puijalon (2)

    1. Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
    2. Université de Lyon, UMR 5023 “Ecologie des hydrosystèmes Naturels et anthropisés”; Université Lyon 1; CNRS; ENTPE, 69622, Villeurbanne Cedex, France
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
The plasticity in clonal architecture may enable plants to effectively respond to environmental constraints and to enhance species ecological niche breadth but its role in plant tolerance to water flow is poorly documented. The present study was carried out to determine whether the clonal architecture varies with respect to water flow in 10 species of the genus Potamogeton colonizing habitats differing by flow conditions. For these 10 species, the traits describing clonal architecture were measured on individuals sampled in natural sites and plasticity in clonal architecture was examined in a common garden growth experiment. The clonal growth architecture did not vary significantly in the species which inhabit either standing (P. lucens, P. natans, and P. pusillus) or running water (P. amblyphyllus and P. berchtoldii). However, the species inhabiting both standing as well as running waters (P. crispus, P. nodosus, P. pectinatus, P. perfoliatus, and P. wrightii) showed considerable and significant variation in clonal growth architecture across these habitats. Transplantation experiment revealed that clonal architecture observed between the plants under different conditions is plastic and not due to genetic differentiation. The present study demonstrated that plasticity in the clonal architecture may enable these species to inhabit stressful conditions of flowing water. Keywords Potamogeton Clonal architecture Standing and running waters Ramet Spacer length

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700