The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage
详细信息    查看全文
  • 作者:Nasim Sabouri (1)
    John A Capra (2)
    Virginia A Zakian (3)

    1. Department of Medical Biochemistry and Biophysics
    ; Ume氓 University ; Ume氓 ; 901 87 ; Sweden
    2. Department of Biological Sciences and Biomedical Informatics and Center for Human Genetics Research
    ; Vanderbilt University ; Nashville ; TN ; 37235 ; USA
    3. Department of Molecular Biology
    ; Princeton University ; Princeton ; NJ ; 08544 ; USA
  • 关键词:Pfh1 ; Pif1 family helicase ; G ; quadruplex DNA ; DNA replication ; Schizosaccharomyces pombe ; Genome integrity
  • 刊名:BMC Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:12
  • 期:1
  • 全文大小:951 KB
  • 参考文献:1. Bernstein, KA, Gangloff, S, Rothstein, R (2010) The RecQ DNA helicases in DNA repair. Annu Rev Genet 44: pp. 393-417 CrossRef
    2. Chisholm, KM, Aubert, SD, Freese, KP, Zakian, VA, King, MC, Welcsh, PL (2012) A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1. PLoS One 7: pp. e30748 CrossRef
    3. Bochman, ML, Judge, CP, Zakian, VA (2011) The Pif1 family in prokaryotes: what are our helicases doing in your bacteria?. Mol Biol Cell 22: pp. 1955-1959 CrossRef
    4. Bochman, ML, Sabouri, N, Zakian, VA (2010) Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst) 9: pp. 237-249 CrossRef
    5. Pinter, SF, Aubert, SD, Zakian, VA (2008) The Schizosaccharomyces pombe Pfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA. Mol Cell Biol 28: pp. 6594-6608 CrossRef
    6. Sabouri, N, McDonald, KR, Webb, CJ, Cristea, IM, Zakian, VA (2012) DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev 26: pp. 581-593 CrossRef
    7. Steinacher, R, Osman, F, Dalgaard, JZ, Lorenz, A, Whitby, MC (2012) The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability. Genes Dev 26: pp. 594-602 CrossRef
    8. Bochman, ML, Paeschke, K, Zakian, VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13: pp. 770-780 CrossRef
    9. Paeschke, K, Simonsson, T, Postberg, J, Rhodes, D, Lipps, HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12: pp. 847-854 CrossRef
    10. Paeschke, K, Juranek, S, Simonsson, T, Hempel, A, Rhodes, D, Lipps, HJ (2008) Telomerase recruitment by the telomere end binding protein-beta facilitates G-quadruplex DNA unfolding in ciliates. Nat Struct Mol Biol 15: pp. 598-604 CrossRef
    11. Huppert, JL, Balasubramanian, S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33: pp. 2908-2916 CrossRef
    12. Todd, AK, Johnston, M, Neidle, S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33: pp. 2901-2907 CrossRef
    13. Biffi, G, Tannahill, D, McCafferty, J, Balasubramanian, S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5: pp. 182-186 CrossRef
    14. Henderson, A, Wu, Y, Huang, YC, Chavez, EA, Platt, J, Johnson, FB, Brosh, RM, Sen, D, Lansdorp, PM (2013) Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res 35: pp. 406-413
    15. Capra, JA, Paeschke, K, Singh, M, Zakian, VA (2010) G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol 6: pp. e1000861 CrossRef
    16. Rawal, P, Kummarasetti, VB, Ravindran, J, Kumar, N, Halder, K, Sharma, R, Mukerji, M, Das, SK, Chowdhury, S (2006) Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res 16: pp. 644-655 CrossRef
    17. Huppert, JL, Balasubramanian, S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35: pp. 406-413 CrossRef
    18. Paeschke, K, Capra, JA, Zakian, VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145: pp. 678-691 CrossRef
    19. Paeschke, K, Bochman, ML, Garcia, PD, Cejka, P, Friedman, KL, Kowalczykowski, SC, Zakian, VA (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497: pp. 458-462 CrossRef
    20. Piazza, A, Serero, A, Boule, JB, Legoix-Ne, P, Lopes, J, Nicolas, A (2012) Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13. PLoS Genet 8: pp. e1003033 CrossRef
    21. Rodriguez, R, Miller, KM, Forment, JV, Bradshaw, CR, Nikan, M, Britton, S, Oelschlaegel, T, Xhemalce, B, Balasubramanian, S, Jackson, SP (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8: pp. 301-310 CrossRef
    22. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S, Lin MF, Heiman DI, Young SK, Furuya K, Guo Y, Pidoux A, Chen HM, Robbertse B, Goldberg JM, Aoki K, Bayne EH, Berlin AM, Desjardins CA, Dobbs E, Dukaj L, Fan L, FitzGerald MG, French C, Gujja S, Hansen K, Keifenheim D, Levin JZ, / et al: Comparative functional genomics of the fission yeasts. / Science 2011, 332:930鈥?36. http://www.broadinstitute.org/annotation/genome/schizosaccharomyces_group/MultiDownloads.html.
    23. Sugawara NF: DNA sequences at the telomeres of the fission yeast S. pombe. / PhD. thesis. Harvard University; 1989.
    24. Sanchez, JA, Kim, SM, Huberman, JA (1998) Ribosomal DNA replication in the fission yeast, Schizosaccharomyces pombe. Exp Cell Res 238: pp. 220-230 CrossRef
    25. Naehring, J, Kiefer, S, Wolf, K (1995) Nucleotide sequence of the Schizosaccharomyces japonicus var. versatilis ribosomal RNA gene cluster and its phylogenetic implications. Curr Genet 28: pp. 353-359 CrossRef
    26. Hershman, SG, Chen, Q, Lee, JY, Kozak, ML, Yue, P, Wang, LS, Johnson, FB (2008) Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res 36: pp. 144-156 CrossRef
    27. Hanakahi, LA, Sun, H, Maizels, N (1999) High affinity interactions of nucleolin with G-G-paired rDNA. J Biol Chem 274: pp. 15908-15912 CrossRef
    28. Ben-Shem A, GarreaudeLoubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M: The structure of the eukaryotic ribosome at 3.0 A resolution. / Science 2011, 334:1524鈥?529.
    29. Doniger, SW, Fay, JC (2007) Frequent gain and loss of functional transcription factor binding sites. PLoS Comput Biol 3: pp. e99 CrossRef
    30. Tuch, BB, Li, H, Johnson, AD (2008) Evolution of eukaryotic transcription circuits. Science 319: pp. 1797-1799 CrossRef
    31. Tuch, BB, Galgoczy, DJ, Hernday, AD, Li, H, Johnson, AD (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6: pp. e38 CrossRef
    32. Storey, JD (2002) A direct approach to false discovery rates. J Royal Stat Soc Ser B-Stat Method 64: pp. 479-498 CrossRef
    33. McDonald, KR, Sabouri, N, Webb, CJ, Zakian, VA (2014) The Pif1 family helicase Pfh1 facilitates telomere replication and has an RPA-dependent role during telomere lengthening. DNA Repair (Amst) 24: pp. 80-86 CrossRef
    34. Azvolinsky, A, Giresi, PG, Lieb, JD, Zakian, VA (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell 34: pp. 722-734 CrossRef
    35. Rozenzhak, S, Mejia-Ramirez, E, Williams, JS, Schaffer, L, Hammond, JA, Head, SR, Russell, P (2010) Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-Phase in fission yeast. PLoS Genet 6: pp. e1001032 CrossRef
    36. Forsburg, SL (1999) The best yeast?. Trends Genet 15: pp. 340-344 CrossRef
    37. Eddy, J, Maizels, N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 34: pp. 3887-3896 CrossRef
    38. Lantermann, AB, Straub, T, Stralfors, A, Yuan, GC, Ekwall, K, Korber, P (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17: pp. 251-257 CrossRef
    39. Drygin, D, Siddiqui-Jain, A, O鈥橞rien, S, Schwaebe, M, Lin, A, Bliesath, J, Ho, CB, Proffitt, C, Trent, K, Whitten, JP, Lim, JK, Hoff, D, Anderes, K, Rice, WG (2009) Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 69: pp. 7653-7661 CrossRef
    40. Oganesian, L, Moon, IK, Bryan, TM, Jarstfer, MB (2006) Extension of G-quadruplex DNA by ciliate telomerase. EMBO J 25: pp. 1148-1159 CrossRef
    41. Zahler, AM, Williamson, JR, Cech, TR, Prescott, DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350: pp. 718-720 CrossRef
    42. Zaug, AJ, Podell, ER, Cech, TR (2005) Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci U S A 102: pp. 10864-10869 CrossRef
    43. Teytelman, L, Thurtle, DM, Rine, J, Oudenaarden, A (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A 110: pp. 18602-18607 CrossRef
    44. Adelman, K, Lis, JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13: pp. 720-731 CrossRef
    45. Boule, JB, Zakian, VA (2007) The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res 35: pp. 5809-5818 CrossRef
    46. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. / Curr Protoc Mol Biol 2010, Chapter 19:Unit 19 10 11鈥?1.
    47. Wood, V, Harris, MA, McDowall, MD, Rutherford, K, Vaughan, BW, Staines, DM, Aslett, M, Lock, A, Bahler, J, Kersey, PJ, Oliver, SG (2012) PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res 40: pp. D695-D699 CrossRef
    48. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: pp. R25 CrossRef
    49. Zhang, Y, Liu, T, Meyer, CA, Eeckhoute, J, Johnson, DS, Bernstein, BE, Nusbaum, C, Myers, RM, Brown, M, Li, W, Liu, XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: pp. R137 CrossRef
    50. Siow, CC, Nieduszynska, SR, Muller, CA, Nieduszynski, CA (2012) OriDB, the DNA replication origin database updated and extended. Nucleic Acids Res 40: pp. D682-D686 CrossRef
    51. Sadeghi, L, Bonilla, C, Stralfors, A, Ekwall, K, Svensson, JP (2011) Podbat: a novel genomic tool reveals Swr1-independent H2A.Z incorporation at gene coding sequences through epigenetic meta-analysis. PLoS Comput Biol 7: pp. e1002163 CrossRef
    52. Fowler, KR, Gutierrez-Velasco, S, Martin-Castellanos, C, Smith, GR (2013) Protein determinants of meiotic DNA break hot spots. Mol Cell 49: pp. 983-996 CrossRef
    53. Storey, JD, Tibshirani, R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100: pp. 9440-9445 CrossRef
  • 刊物主题:Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1741-7007
文摘
Background G-quadruplexes (G4s) are stable non-canonical DNA secondary structures consisting of stacked arrays of four guanines, each held together by Hoogsteen hydrogen bonds. Sequences with the ability to form these structures in vitro, G4 motifs, are found throughout bacterial and eukaryotic genomes. The budding yeast Pif1 DNA helicase, as well as several bacterial Pif1 family helicases, unwind G4 structures robustly in vitro and suppress G4-induced DNA damage in S. cerevisiae in vivo. Results We determined the genomic distribution and evolutionary conservation of G4 motifs in four fission yeast species and investigated the relationship between G4 motifs and Pfh1, the sole S. pombe Pif1 family helicase. Using chromatin immunoprecipitation combined with deep sequencing, we found that many G4 motifs in the S. pombe genome were associated with Pfh1. Cells depleted of Pfh1 had increased fork pausing and DNA damage near G4 motifs, as indicated by high DNA polymerase occupancy and phosphorylated histone H2A, respectively. In general, G4 motifs were underrepresented in genes. However, Pfh1-associated G4 motifs were located on the transcribed strand of highly transcribed genes significantly more often than expected, suggesting that Pfh1 has a function in replication or transcription at these sites. Conclusions In the absence of functional Pfh1, unresolved G4 structures cause fork pausing and DNA damage of the sort associated with human tumors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700