Nanoscale Energy Confinement and Hybridization of Surface Plasmons Based on Skin Depth in Au/Ag Core-Shell Nanostructures
详细信息    查看全文
  • 作者:Xi-bin Xu ; Miao Liu ; Jiang-shan Luo ; Yu-ying Wang ; Zao Yi ; Xi-bo Li…
  • 关键词:Skin depth ; Surface plasmon ; Energy confinement ; Plasmom hybridization
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:10
  • 期:4
  • 页码:797-808
  • 全文大小:6,485 KB
  • 参考文献:1.Yang P, Portal猫s H, Pileni MP (2009) Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method. J Phys Chem C 113:11597鈥?1604View Article
    2.Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824鈥?30View Article
    3.Cui B, Clime L, Li K, Veres T (2008) Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy. Nanotechnology 19:145302View Article
    4.Yang Y, Matsubara S, Xiong LM, Hayakawa T, Nogami M (2007) Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 111:9095鈥?104View Article
    5.Lebon A, El Marssi M, Farhi R, Dammak H (2001) Translational and orientational order in lead zinc niobate: an optical and Raman study. J Appl Phys 89:3947鈥?954View Article
    6.Leventis N, Chandrasekaran N, Sadekar AG, Sotiriou-Leventis C, Lu HB (2009) One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc 131:4576鈥?577View Article
    7.Kim JH, Jung Y, Chung JW, An B-K, Park SY (2009) Fabrication of a patterned assembly of semiconducting organic nanowires. Small 5:804鈥?07View Article
    8.Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19:22029鈥?2106View Article
    9.Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, Xia Y (2010) Au@ Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 4:6725鈥?734View Article
    10.Murphy CJ, Thompson LB, Alkilany AM, Sisco PN, Boulos SP, Sivapalan S, Yang JA, Chernak DJ, Huang J (2010) The many faces of gold nanorods. J Phys Chem Lett 1:2867鈥?875View Article
    11.Wiley BJ, Xiong Y, Li Z, Yin Y, Xia Y (2006) Right bipyramids of silver: a new shape derived from single twinned seeds. Nano Lett 6:765鈥?68View Article
    12.Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487鈥?90View Article
    13.Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G (2009) Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J Am Chem Soc 131:697鈥?03View Article
    14.Seo D, Yoo CI, Chung IS, Park SM, Ryu S, Song H (2008) Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J Phys Chem C 112:2469鈥?475View Article
    15.Li Y, Qi W, Huang B, Ji W, Wang M (2013) Size- and composition-dependent structural stability of core-shell and alloy Pd-Pt and Au-Ag Nanoparticles. J Phys Chem C 117:15394鈥?5401View Article
    16.Xu X, Yi Z, Li X, Wang Y, Geng X, Luo J, Luo B, Yi Y, Tang Y (2012) Discrete dipole approximation simulation of the surface plasmon resonance of core/shell nanostructure and the study of resonance cavity effect. J Phys Chem C 116:24046鈥?4053View Article
    17.Bai Z, Chen R, Si P, Huang Y, Sun H, Kim DH (2013) Fluorescent pH sensor based on Ag@ SiO2 core-shell nanoparticle. ACS Appl Mater Interfaces 5:5856鈥?860View Article
    18.Fan JA, Wu C, Bao K et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135鈥?138View Article
    19.Serpell CJ, Cookson J, Ozkaya D, Beer PD (2011) Core@ shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 3:478鈥?83
    20.Lebon A, Garc铆a-Fuente A, Vega A, Aguilera-Granja F (2011) Hydrogen insertion in Pd core/Pt shell cubo-octahedral nanoparticles. Phys Rev B 83:125427View Article
    21.Huang R, Wen YH, Shao GF et al (2013) Insight into the melting behavior of Au-Pt core-shell nanoparticles from atomistic simulations. J Phys Chem C 117:4278鈥?286View Article
    22.Steiner D, Mokari T, Banin U, Millo O (2005) Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells. Phys Rev Lett 95:056805View Article
    23.Zhu J, Wei S, Ryu J, Sun L, Luo Z, Guo Z (2010) Magnetic epoxy resin nanocomposites reinforced with core-shell structured Fe@ FeO nanoparticles: fabrication and property analysis. ACS Appl Mater Interfaces 2:2100鈥?107View Article
    24.Yang TT, Chen WT, Hsu YJ et al (2010) Interfacial charge carrier dynamics in core-shell Au-CdS nanocrystals. J Phys Chem C 114:11414鈥?1420View Article
    25.Kamat PV (2008) Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737鈥?8753View Article
    26.Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8:637View Article
    27.Farrow B, Kamat PV (2009) CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J Am Chem Soc 131:11124鈥?1131View Article
    28.Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007View Article
    29.Tvrdy K, Kamat PV (2009) Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces. J Phys Chem A 113:3765鈥?772View Article
    30.Zhang J, Bang JH, Tang C, Kamat PV (2009) Tailored TiO2鈥揝rTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4:387鈥?95View Article
    31.Chakrapani V, Tvrdy K, Kamat PV (2010) Modulation of electron injection in CdSe-TiO2 system through medium alkalinity. J Am Chem Soc 132:1228鈥?229View Article
    32.Chen WT, Yang TT, Hsu Y (2008) Au-CdS core-shell nanocrystals with controllable shell thickness and photoinduced charge separation property. J Chem Mater 20:7204鈥?206View Article
    33.Xiang YU, Wu XC, Liu DF, Li ZY, Chu WG, Feng LL, Zhang K, Zhou WY, Xie SS (2008) Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating. Langmuir 24:3465鈥?470View Article
    34.Duan J, Nepal D, Park K et al (2011) Computational prediction of molecular photoresponse upon proximity to gold nanorods. J Phys Chem C 115:13961鈥?3967View Article
    35.Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7:729View Article
    36.Myroshnychenko V, Carb贸-Argibay E, Pastoriza-Santos I et al (2008) Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method. Adv Mater 20:4288鈥?293View Article
    37.Garcia de Abajo FJ, Howie A (1998) Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys Rev Lett 80:5180鈥?183View Article
    38.Abu Hatab NA, Oran JM, Sepaniak MJ (2008) Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2:377鈥?85View Article
    39.Kahnert FM (2003) Numerical methods in electromagnetic scattering theory. J Quant Spectrosc Radiat Transf 775:79鈥?0
    40.Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491鈥?499View Article
    41.Yurkin MA, Hoekstra AG (2011) The discrete-dipole-approximation code ADDA: capabilities and known limitations. J Quant Spectrosc Radiat Transf 112:2234鈥?247View Article
    42.Draine BT, Flatau PJ. User guide to the discrete dipole approximation code DDSCAT 7.1. http://鈥媋rXiv.鈥媜rg/鈥媋bs/鈥?002.鈥?505v1 . Accessed 2010
    43.Draine BT, Flatau PJ (2008) Discrete-dipole approximation for periodic targets: theory and tests. J Opt Soc Am A 25:2693鈥?703View Article
    44.Zhao J, Pinchuk AO, McMahon JM, Li SZ, Alisman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710鈥?720View Article
    45.Novo C, Funston AM, Pastoriza-Santos I, Liz-Marzan P (2008) Influence of the medium refractive index on the optical properties of single gold triangular prisms on a substrate. J Phys Chem C 112:3鈥?View Article
    46.Palik ED (1985) Handbook of optical constants of solids. Academic, New York
    47.SOPRA N&K Database. www.鈥媟efractiveindex.鈥媔nfo
  • 作者单位:Xi-bin Xu (1) (2) (3)
    Miao Liu (2) (3)
    Jiang-shan Luo (2)
    Yu-ying Wang (1) (2) (3)
    Zao Yi (1) (2)
    Xi-bo Li (2) (3)
    You-gen Yi (1)
    Yong-jian Tang (2)

    1. College of Physics and Electronics, Central South University, Changsha, 410083, China
    2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
    3. Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
The electric field tends to become distributed within a conductor due to skin effect such that the field density is largest near the surface of the conductor and decreases with greater depths in the conductor. The electric field mainly distributes at the skin of the conductor, between the outer surface and a level called the skin depth. For a plasmonic nanosystem smaller than the skin depth, oscillations of the metal electrons will be driven by the optical electric field penetrating the entire system. This effect will induce confinement of optical energy inside the whole systems and influence the performance of surface plasmon. A theoretical model that a gold core is embedded within Ag nanoshell is constructed to simulate hybridization of surface plasmon and energy confinement in Au/Ag core/shell nanostructures based on the skin depth. Indeed, nanoshells in the core/shell system greatly influence the surface plasmon resonance, and the shell frequency is tuned efficiently through hybridization of surface plasmon. The plasmon resonances in core/shell particles can be understood in terms of hybridization between the plasmon modes of the surfaces and interfaces supported by cavity of the metallic shells. The hybridized plasmons induced by interaction of these plasmon modes can result in energy alteration over a wide range in wavelength. Combining with extinction spectra and field distributions, it can be seen that skin depth plays an important role in energy confinement and hybridization of surface plasmom.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700