Sensitivity analysis and parametric identification for ship manoeuvring in 4 degrees of freedom
详细信息    查看全文
  • 作者:Xue-Gang Wang (1)
    Zao-Jian Zou (1) (2)
    Feng Xu (3)
    Ru-Yi Ren (1)
  • 关键词:Ship manoeuvring ; Hydrodynamic coefficients ; Sensitivity analysis ; Parametric identification ; 4 Degrees of freedom
  • 刊名:Journal of Marine Science and Technology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:19
  • 期:4
  • 页码:394-405
  • 全文大小:1,601 KB
  • 参考文献:1. Son KH, Nomoto K (1982) On the coupled motion of steering and rolling of a high speed container ship. Nav Archit Ocean Eng 20:73-3
    2. Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, New York
    3. Blanke M, Jensen AG (1997) Dynamic properties of a container vessel with low metacentric height. Trans Inst Meas Control 19(2):78-3 CrossRef
    4. Pérez T, Blanke M (2002) Mathematical ship modeling for control applications. Technical Report, Technical University of Denmark
    5. Hwang WY (1982) Cancellation effect and parameter identifiability of ship steering dynamics. Int Shipbuild Prog 26(332):90-20
    6. Hwang WY (1980) Application of system identification to ship maneuvering. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA
    7. Misiag WA, Kose A (1994) The sensitivity analysis of predicted maneuvering performance of full bodied ship in the case of MMG mathematical model. Trans West Jpn Soc Nav Archit 87:125-33
    8. Rhee KP, Kim K (1999) A new sea trial method for estimating hydrodynamic derivatives. Ship Ocean Technol 3(3):25-4
    9. Yeo DJ, Rhee KP (2006) Sensitivity analysis of submersibles manoeuvrability and its application to the design of actuator inputs. Ocean Eng 33:2270-286 CrossRef
    10. Hayes MN (1971) Parameters identification of nonlinear stochastic systems applied to ocean vehicle dynamics. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA
    11. Abkowitz MA (1980) Measurement of hydrodynamic characteristic from ship maneuvering trials by system identification. Trans SNAME 88:283-18
    12. Revestido E, Velasco FJ (2012) Two-step identification of non-linear manoeuvring models of marine vessels. Ocean Eng 53:72-2 CrossRef
    13. ?str?m KJ, K?llstr?m CG (1976) Identification of ship steering dynamics. Automatica 12(1):9-2 CrossRef
    14. K?llstr?m CG, ?str?m KJ (1981) Experiences of system identification applied to ship steering. Automatica 17(1):187-98 CrossRef
    15. Zhou WW, Blanke M (1989) Identification of a class of nonlinear state-space models using RPE techniques. IEEE Trans Autom Control 34(3):312-16 CrossRef
    16. Rhee KP, Lee SY, Sung YJ (1998) Estimation of manoeuvring coefficients from PMM test by genetic algorithm. In: Procedings of International Symposium and Workshop on Force Acting on a Manoeuvring Vessel, Val de Reuil, France, pp 77-7
    17. Selvam RP, Bhattacharyya SK, Haddara MR (2005) A frequency domain system identification method for linear ship manoeuvring. Int Shipbuild Prog 52(1):5-7
    18. Bhattacharyya SK, Haddara MR (2006) Parametric identification for nonlinear ship manoeuvring. J Ship Res 50(3):197-07
    19. Pérez T, Fossen TI (2011) Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic data. Ocean Eng 38(2-):426-35 CrossRef
    20. Haddara MR, Wang Y (1999) Parametric identification of manoeuvring models for ships. Int Shipbuild Prog 46(445):5-7
    21. Luo WL, Zou ZJ (2009) Parametric identification of ship maneuvering models by using support vector machines. J Ship Res 53(1):19-0
    22. Zhang XG, Zou ZJ (2011) Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression. J Hydrodyn 23(3):353-60 CrossRef
    23. Vapnik VN (2000) The nature of statistical learning theory. Springer, New York CrossRef
    24. Suykens JAK, Vandewalle J (1999) Least squares support vector machines classifiers. Neural Process Lett 9(3):293-00 CrossRef
  • 作者单位:Xue-Gang Wang (1)
    Zao-Jian Zou (1) (2)
    Feng Xu (3)
    Ru-Yi Ren (1)

    1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
    2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
    3. Wuhan Second Ship Design and Research Institute, Wuhan, 430064, China
  • ISSN:1437-8213
文摘
The spiral test is simulated by using a ship manoeuvring mathematical model of 4 degrees of freedom. Based on the simulation data, sensitivity analysis using the direct method is implemented for the hydrodynamic coefficients in the mathematical model, and the mathematical model is simplified by omitting the coefficients of smaller sensitivity according to the sensitivity analysis results. 10°/10°, 20°/20° zigzag tests and 35° turning circle manoeuvre are simulated with the original and the simplified mathematical models. The comparison of simulation results obtained by the original and the simplified models shows the effectiveness of the sensitivity analysis and the validity of the simplified model. The hydrodynamic coefficients in the simplified model are then identified by using the least square support vector machines, with the training samples taken from the simulation data of 20°/20° zigzag test. 20°/20°, 10°/10° zigzag tests and 35° turning circle manoeuvre are predicted by using the identified hydrodynamic coefficients, and the predicted results are compared with the simulation results to demonstrate the validity and generalization performance of the identification method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700