Folic Acid Acts Through DNA Methyltransferases to Induce the Differentiation of Neural Stem Cells into Neurons
详细信息    查看全文
  • 作者:Suhui Luo (1)
    Xumei Zhang (1)
    Min Yu (1)
    Hai Yan (1)
    Huan Liu (1)
    John X. Wilson (2)
    Guowei Huang (1)
  • 关键词:Folic acid ; Neural stem cells ; DNA methyltransferases ; Differentiation
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:66
  • 期:3
  • 页码:559-566
  • 全文大小:456KB
  • 参考文献:1. Blom, H. J., & Smulders, Y. (2011). Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. / Journal of Inherited Metabolic Disease, / 34, 75-1. CrossRef
    2. Daly, L. E., Kirke, P. N., Molloy, A., Weir, D. G., & Scott, J. M. (1995). Folate levels and neural tube defects. Implications for prevention. / Journal of the American Medical Association, / 274, 1698-702. CrossRef
    3. Haan, M. N., Miller, J. W., Aiello, A. E., Whitmer, R. A., Jagust, W. J., Mungas, D. M., et al. (2007). Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. / American Journal of Clinical Nutrition, / 85, 511-17.
    4. Morris, M. S. (2003). Homocysteine and Alzheimer’s disease. / Lancet Neurology, / 2, 425-28. CrossRef
    5. Van Dam, F., & Van Gool, W. A. (2009). Hyperhomocysteinemia and Alzheimer’s disease: A systematic review. / Archives of Gerontology and Geriatrics, / 48, 425-30. CrossRef
    6. Gage, F. H. (2000). Mammalian neural stem cells. / Science, / 287, 1433-438. CrossRef
    7. Edlund, T., & Jessell, T. M. (1999). Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. / Cell, / 96, 211-24. CrossRef
    8. Mu, Y., Lee, S. W., & Gage, F. H. (2010). Signaling in adult neurogenesis. / Current Opinion in Neurobiology, / 20, 416-23. CrossRef
    9. Zhang, X., Liu, H., Cong, G., Tian, Z., Ren, D., Wilson, J. X., et al. (2008). Effects of folate on notch signaling and cell proliferation in neural stem cells of neonatal rats in vitro. / Journal of Nutritional Science Vitaminology, / 54, 353-56. CrossRef
    10. Zhang, X. M., Huang, G. W., Tian, Z. H., Ren, D. L., & Wilson, J. X. (2009). Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells. / Nutritional Neuroscience, / 12, 226-32. CrossRef
    11. Zhang, X., Huang, G. W., Liu, H., Chang, H., & Wilson, J. X. (2012). Folic acid enhances Notch signaling, hippocampal neurogenesis, and cognitive function in a rat model of cerebral ischemia. / Nutritional Neuroscience, / 15, 55-1.
    12. Juliandi, B., Abematsu, M., & Nakashima, K. (2010). Epigenetic regulation in neural stem cell differentiation. / Development, Growth & Differentiation, / 52, 493-04. CrossRef
    13. Mohamed Ariff, I., Mitra, A., & Basu, A. (2012). Epigenetic regulation of self-renewal and fate determination in neural stem cells. / Journal of Neuroscience Research, / 90, 529-39. CrossRef
    14. Tawa, R., Ono, T., Kurishita, A., Okada, S., & Hirose, S. (1990). Changes of DNA methylation level during pre- and postnatal periods in mice. / Differentiation, / 45, 44-8. CrossRef
    15. Iskandar, B. J., Rizk, E., Meier, B., Hariharan, N., Bottiglieri, T., Finnell, R. H., et al. (2010). Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. / Journal of Clinical Investigation, / 120, 1603-616. CrossRef
    16. Jacob, R. A., Gretz, D. M., Taylor, P. C., James, S. J., Pogribny, I. P., Miller, B. J., et al. (1998). Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. / Journal of Nutrition, / 128, 1204-212.
    17. Pogribny, I. P., Miller, B. J., & James, S. J. (1997). Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. / Cancer Letters, / 115, 31-8. CrossRef
    18. Champion, C., Guianvarc’h, D., Senamaud-Beaufort, C., Jurkowska, R. Z., Jeltsch, A., Ponger, L., et al. (2010). Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. / PLoS ONE, / 5, e12388. CrossRef
    19. Ellis, P., Fagan, B. M., Magness, S. T., Hutton, S., Taranova, O., Hayashi, S., et al. (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. / Developmental Neuroscience, / 26, 148-65. CrossRef
    20. Favaro, R., Valotta, M., Ferri, A. L., Latorre, E., Mariani, J., Giachino, C., et al. (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. / Nature Neuroscience, / 12, 1248-256. CrossRef
    21. Fatemi, M., Hermann, A., Gowher, H., & Jeltsch, A. (2002). Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. / European Journal of Biochemistry, / 269(20), 4981-984. CrossRef
    22. Feng, J., Chang, H., Li, E., & Fan, G. (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. / Journal of Neuroscience Research, / 79, 734-46. CrossRef
    23. Ricci, G., Volpi, L., Pasquali, L., Petrozzi, L., & Siciliano, G. (2009). Astrocyte-neuron interactions in neurological disorders. / Journal of Biological Physics, / 35, 317-36. CrossRef
    24. Gu, Y., Arruda-Carvalho, M., Wang, J., Janoschka, S. R., Josselyn, S. A., Frankland, P. W., et al. (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. / Nature Neuroscience, / 15, 1700-706. CrossRef
    25. Mattson, M. P., & Shea, T. B. (2003). Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. / Trends Neuroscience, / 26, 137-46. CrossRef
    26. Steinfeld, R., Grapp, M., Kraetzner, R., Dreha-Kulaczewski, S., Helms, G., Dechent, P., et al. (2009). Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. / American Journal of Human Genetics, / 85, 354-63. CrossRef
    27. Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. / Nature Neuroscience, / 13, 423-30. CrossRef
    28. Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I. C., Desai, P., et al. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. / Journal of Biological Chemistry, / 281, 15763-5773. CrossRef
    29. Takizawa, T., Nakashima, K., Namihira, M., Ochiai, W., Uemura, A., Yanagisawa, M., et al. (2001). DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. / Developmental Cell, / 1, 749-58. CrossRef
    30. Jafari, S., Hosseini, M. S., Hajian, M., Forouzanfar, M., Jafarpour, F., Abedi, P., et al. (2011). Improved In vitro development of cloned bovine embryos using s-adenosylhomocysteine, a Non-toxic epigenetic modifying reagent. / Molecular Reproduction and Development, / 78, 576-84. CrossRef
    31. Saavedra, O. M., Isakovic, L., Llewellyn, D. B., Zhan, L., Bernstein, N., Claridge, S., et al. (2009). SAR around (L)-S-adenosyl-L-homocysteine, an inhibitor of human DNA methyltransferase (DNMT) enzymes. / Bioorganic & Medicinal Chemistry Letters, / 19, 2747-751. CrossRef
    32. Fang, M., Chen, D., & Yang, C. S. (2007). Dietary polyphenols may affect DNA methylation. / Journal of Nutrition, / 137, 223S-28S.
    33. Singh, R. P., Shiue, K., Schomberg, D., & Zhou, F. C. (2009). Cellular epigenetic modifications of neural stem cell differentiation. / Cell Transplantation, / 18, 1197-211. CrossRef
    34. Pogribny, I. P., Karpf, A. R., James, S. R., Melnyk, S., Han, T., & Tryndyak, V. P. (2008). Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. / Brain Research, / 1237, 25-4. CrossRef
    35. Ruan, Y., Peterson, M. H., Wauson, E. M., Waes, J. G., Finnell, R. H., & Vorce, R. L. (2000). Folic acid protects SWV/Fnn embryo fibroblasts against arsenic toxicity. / Toxicology Letters, / 117(3), 129-37. CrossRef
    36. Boot, M. J., Steegers-Theunissen, R. P., Poelmann, R. E., Van Iperen, L., Lindemans, J., & Gittenberger-de Groot, A. C. (2003). Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro. / Developmental Dynamics, / 227(2), 301-08. CrossRef
    37. Wang, X., & Fenech, M. (2003). A comparison of folic acid and 5-methyltetrahydrofolate for prevention of DNA damage and cell death in human lymphocytes in vitro. / Mutagenesis, / 18, 81-6. CrossRef
    38. Cheng, J. C., Matsen, C. B., Gonzales, F. A., Ye, W., Greer, S., Marquez, V. E., et al. (2003). Inhibition of DNA methylation and reactivation of silenced genes by zebularine. / Journal of the National Cancer Institute, / 95, 399-09. CrossRef
    39. Dote, H., Cerna, D., Burgan, W. E., Carter, D. J., Cerra, M. A., Hollingshead, M. G., et al. (2005). Enhancement of in vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine. / Clinical Cancer Research, / 11(12), 4571-579. CrossRef
  • 作者单位:Suhui Luo (1)
    Xumei Zhang (1)
    Min Yu (1)
    Hai Yan (1)
    Huan Liu (1)
    John X. Wilson (2)
    Guowei Huang (1)

    1. Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
    2. Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214-8028, USA
文摘
The present study investigated the roles of folic acid and DNA methyltransferases (DNMTs) in the differentiation of neural stem cells (NSCs). Neonatal rat NSCs were grown in suspended neurosphere cultures and identified by their expression of SOX2 protein and capacity for self-renewal. Then NSCs were assigned to five treatment groups for cell differentiation: control (folic acid-free differentiation medium), low folic acid (8?μg/mL), high folic acid (32?μg/mL), low folic acid and DNMT inhibitor zebularine (8?μg/mL folic acid and 150?nmol/mL zebularine), and high folic acid and zebularine (32?μg/mL folic acid and 150?nmol/mL zebularine). After 6?days of cell differentiation, immunocytochemistry and western blot analyses were performed to identify neurons by β-tubulin III protein expression and astrocytes by GFAP expression. We observed that folic acid increased DNMT activity which may be regulated by the cellular S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and the abundance of neurons but decreased the number of astrocytes. Zebularine blocked these effects of folic acid. In conclusion, folic acid acts through elevation of DNMT activity to increase neuronal differentiation and decrease astrocytic differentiation in NSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700