Novel DNA methyltransferase-1 (DNMT1) depleting anticancer nucleosides, 4-thio-2-deoxycytidine and 5-aza-4-thio-2-deoxycytidine
详细信息    查看全文
  • 作者:Jaideep V. Thottassery (1) (3)
    Vijaya Sambandam (1)
    Paula W. Allan (1)
    Joseph A. Maddry (1)
    Yulia Y. Maxuitenko (1)
    Kamal Tiwari (1)
    Melinda Hollingshead (2)
    William B. Parker (1) (3)
  • 关键词:DNMT1 ; DNA methyltransferase ; Decitabine ; Azacytidine ; Zebularine ; Deoxycytidine
  • 刊名:Cancer Chemotherapy and Pharmacology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:74
  • 期:2
  • 页码:291-302
  • 全文大小:1,189 KB
  • 参考文献:1. Brown KD, Robertson KD (2007) DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet 39:289-90 CrossRef
    2. Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225-229
    3. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683-92 CrossRef
    4. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107-16 CrossRef
    5. Ooi SK, O’Donnell AH, Bestor TH (2009) Mammalian cytosine methylation at a glance. J Cell Sci 122:2787-791 CrossRef
    6. Wu J, Issa JP, Herman J, Bassett DE Jr, Nelkin BD, Baylin SB (1993) Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci USA 90:8891-895 CrossRef
    7. Vertino PM, Issa JP, Pereira-Smith OM, Baylin SB (1994) Stabilization of DNA methyltransferase levels and CpG island hypermethylation precede SV40-induced immortalization of human fibroblasts. Cell Growth Differ 5:1395-402
    8. Bakin AV, Curran T (1999) Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283:387-90 CrossRef
    9. Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, MacLeod AR (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33:61-5 CrossRef
    10. Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E, Weinberg RA, Jaenisch R (1995) Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81:197-05 CrossRef
    11. Belinsky SA, Klinge DM, Stidley CA, Issa JP, Herman JG, March TH, Baylin SB (2003) Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res 63:7089-093
    12. Milutinovic S, Knox JD, Szyf M (2000) DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21(WAF1/CIP1). J Biol Chem 275:6353-359 CrossRef
    13. Milutinovic S, Brown SE, Zhuang Q, Szyf M (2004) DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation. J Biol Chem 279:27915-7927 CrossRef
    14. Egger G, Jeong S, Escobar SG, Cortez CC, Li TW, Saito Y, Yoo CB, Jones PA, Liang G (2006) Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc Natl Acad Sci USA 103:14080-4085 CrossRef
    15. Agoston AT, Argani P, Yegnasubramanian S, De Marzo AM, Ansari-Lari MA, Hicks JL, Davidson NE, Nelson WG (2005) Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J Biol Chem 280:18302-8310 CrossRef
    16. Zhou Q, Agoston AT, Atadja P, Nelson WG, Davidson NE (2008) Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol Cancer Res 6:873-83 CrossRef
    17. Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25:4727-741 CrossRef
    18. Patel K, Dickson J, Din S, Macleod K, Jodrell D, Ramsahoye B (2010) Targeting of 5-aza-2-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucleic Acids Res 38:4313-324 CrossRef
    19. Santi DV, Norment A, Garrett CE (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA 81:6993-997 CrossRef
    20. Beumer JH, Parise RA, Newman EM, Doroshow JH, Synold TW, Lenz HJ, Egorin MJ (2008) Concentrations of the DNA methyltransferase inhibitor 5-fluoro-2-deoxycytidine (FdCyd) and its cytotoxic metabolites in plasma of patients treated with FdCyd and tetrahydrouridine. Cancer Chemother Pharmacol 62:363-68 CrossRef
    21. Marquez VE, Barchi JJ Jr, Kelley JA, Rao KV, Agbaria R, Ben-Kasus T, Cheng JC, Yoo CB, Jones PA (2005) Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. The magic of its chemistry and biology. Nucleosides, Nucleotides Nucleic Acids 24:305-18 CrossRef
    22. Parker WB, Shaddix SC, Rose LM, Waud WR, Shewach DS, Tiwari KN, Secrist JA III (2000) Metabolism of 4-thio-beta-D-arabinofuranosylcytosine in CEM cells. Biochem Pharmacol 60:1925-932 CrossRef
    23. Thottassery JV, Tiwari KN, Westbrook L, Secrist JA III, Parker WB (2011) Novel 2-deoxycytidine analogs as DNA demethylation agents. Proc Am Assoc Cancer Res 71:2537. doi:10.1158/1538-7445.AM2011-2537
    24. Secrist JA III, Tiwari KN, Riordan JM, Montgomery JA (1991) Synthesis and biological activity of 2-deoxy-4-thio pyrimidine nucleosides. J Med Chem 34:2361-366 CrossRef
    25. Tiwari KN, Cappellacci L, Montgomery JA, Secrist JA III (2003) Synthesis and anti-cancer activity of some novel 5-azacytosine nucleosides. Nucleosides, Nucleotides Nucleic Acids 22:2161-170 CrossRef
    26. Someya H, Shaddix SC, Tiwari KN, Secrist JA III, Parker WB (2003) Phosphorylation of 4-thio-beta-D-arabinofuranosylcytosine and its analogs by human deoxycytidine kinase. J Pharmacol Exp Ther 304:1314-322 CrossRef
    27. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821-826 CrossRef
    28. Dodge JE, Munson C, List AF (2001) KG-1 and KG-1a model the p15 CpG island methylation observed in acute myeloid leukemia patients. Leuk Res 25:917-25 CrossRef
    29. Kumar S, Horton JR, Jones GD, Walker RT, Roberts RJ, Cheng X (1997) DNA containing 4-thio-2-deoxycytidine inhibits methylation by HhaI methyltransferase. Nucleic Acids Res 25:2773-783 CrossRef
    30. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 57:837-41
    31. Dodge JE, List AF, Futscher BW (1998) Selective variegated methylation of the p15 CpG island in acute myeloid leukemia. Int J Cancer 78:561-67 CrossRef
    32. Verri A, Focher F, Duncombe RJ, Basnak I, Walker RT, Coe PL, de Clercq E, Andrei G, Snoeck R, Balzarini J, Spadari S (2000) Anti-(herpes simplex virus) activity of 4-thio-2-deoxyuridines: a biochemical investigation for viral and cellular target enzymes. Biochem J 351(Pt 2):319-26 CrossRef
    33. Rogstad DK, Herring JL, Theruvathu JA, Burdzy A, Perry CC, Neidigh JW, Sowers LC (2009) Chemical decomposition of 5-aza-2-deoxycytidine (Decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry. Chem Res Toxicol 22:1194-204 CrossRef
    34. Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, Jacobsen SE, Pradhan S (2009) Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci USA 106:5076-081 CrossRef
    35. Parker WB, Shaddix SC, Rose LM, Tiwari KN, Montogmery JA, Secrist JA III, Bennett LL Jr (1995) Metabolism and metabolic actions of 4-thiothymidine in L1210 cells. Biochem Pharmacol 50:687-95 CrossRef
    36. Someya H, Waud WR, Parker WB (2006) Long intracellular retention of 4-thio-arabinofuranosylcytosine 5-triphosphate as a critical factor for the anti-solid tumor activity of 4-thio-arabinofuranosylcytosine. Cancer Chemother Pharmacol 57:772-80 CrossRef
    37. Richardson KA, Vega TP, Richardson FC, Moore CL, Rohloff JC, Tomkinson B, Bendele RA, Kutcha RD (2004) Polymerization of the triphosphates of araC, 2-2-difluorodeoxycytidine (dFdC) and OSI-7836 (T-araC)by human DNA polymerase alpha and DNA primase. Biochem Pharmacol 68:2337-346 CrossRef
  • 作者单位:Jaideep V. Thottassery (1) (3)
    Vijaya Sambandam (1)
    Paula W. Allan (1)
    Joseph A. Maddry (1)
    Yulia Y. Maxuitenko (1)
    Kamal Tiwari (1)
    Melinda Hollingshead (2)
    William B. Parker (1) (3)

    1. Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL, 35205, USA
    3. University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, AL, USA
    2. Biological Testing Branch, NCI at Frederick, Frederick, MD, USA
  • ISSN:1432-0843
文摘
Purpose Currently approved DNA hypomethylating nucleosides elicit their effects?in part by depleting DNA methyltransferase I (DNMT1). However, their low response rates and adverse effects continue to drive the discovery of newer DNMT1 depleting agents. Herein, we identified two novel 2-deoxycytidine (dCyd) analogs, 4-thio-2-deoxycytidine (T-dCyd) and 5-aza-4-thio-2-deoxycytidine (aza-T-dCyd) that potently deplete DNMT1 in both in vitro and in vivo models of cancer and concomitantly inhibit tumor growth. Methods DNMT1 protein levels in in vitro and in vivo cancer models were determined by Western blotting and antitumor efficacy was evaluated using xenografts. Effects on CpG methylation were evaluated using methylation-specific PCR. T-dCyd metabolism was evaluated using radiolabeled substrate. Results T-dCyd markedly depleted DNMT1 in CCRF-CEM and KG1a leukemia and NCI-H23 lung carcinoma cell lines, while it was ineffective in the HCT-116 colon or IGROV-1 ovarian tumor lines. On the other hand, aza-T-dCyd potently depleted DNMT1 in all of these lines indicating that dCyd analogs with minor structural dissimilarities induce different DNMT1 turnover mechanisms. Although T-dCyd was deaminated to 4-thio-2-deoxyuridine, very little was converted to 4-thio-thymidine nucleotides, suggesting that inhibition of thymidylate synthase would be minimal with 4-thio dCyd analogs. Both T-dCyd and aza-T-dCyd also depleted DNMT1 in human tumor xenografts and markedly reduced in vivo tumor growth. Interestingly, the selectivity index of aza-T-dCyd was at least tenfold greater than that of decitabine. Conclusions Collectively, these data show that 4-thio modified dCyd analogs, such as T-dCyd or aza-T-dCyd, could be a new source of clinically effective DNMT1 depleting anticancer compounds with less toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700