Learning from other diseases: protection and pathology in chronic fungal infections
详细信息    查看全文
  • 作者:Teresa Zelante ; Giuseppe Pieraccini ; Lucia Scaringi…
  • 关键词:Mycobiome ; Fungal infection ; Kynurenine ; IDO ; AhR
  • 刊名:Springer Seminars in Immunopathology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:38
  • 期:2
  • 页码:239-248
  • 全文大小:615 KB
  • 参考文献:1.Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288. doi:10.​1038/​nri2939 PubMed CrossRef
    2.Segal BH, Herbrecht R, Stevens DA, Ostrosky-Zeichner L, Sobel J, Viscoli C, Walsh TJ, Maertens J, Patterson TF, Perfect JR, Dupont B, Wingard JR, Calandra T, Kauffman CA, Graybill JR, Baden LR, Pappas PG, Bennett JE, Kontoyiannis DP, Cordonnier C, Viviani MA, Bille J, Almyroudis NG, Wheat LJ, Graninger W, Bow EJ, Holland SM, Kullberg BJ, Dismukes WE, De Pauw BE (2008) Defining responses to therapy and study outcomes in clinical trials of invasive fungal diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer consensus criteria. Clin Infect Dis 47:674–683. doi:10.​1086/​590566 PubMed PubMedCentral CrossRef
    3.Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341. doi:10.​1016/​j.​tim.​2013.​04.​002 PubMed PubMedCentral CrossRef
    4.Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5:63. doi:10.​1186/​gm467 PubMed PubMedCentral CrossRef
    5.Romani L, Zelante T, De Luca A, Iannitti RG, Moretti S, Bartoli A, Aversa F, Puccetti P (2014) Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur J Immunol 44:3192–3200. doi:10.​1002/​eji.​201344406 PubMed CrossRef
    6.Schelenz S, Barnes RA, Barton RC, Cleverley JR, Lucas SB, Kibbler CC, Denning DW, British Society for Medical M (2015) British Society for Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet Infect Dis 15:461–474. doi:10.​1016/​S1473-3099(15)70006-X PubMed CrossRef
    7.Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416. doi:10.​1038/​nri3684 PubMed PubMedCentral CrossRef
    8.Seed PC (2014) The Human Mycobiome. Cold Spring Harb Perspect Med 5. doi:10.​1101/​cshperspect.​a019810
    9.Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6, e1000713. doi:10.​1371/​journal.​ppat.​1000713 PubMed PubMedCentral CrossRef
    10.Ott SJ, Kuhbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S (2008) Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43:831–841. doi:10.​1080/​0036552080193543​4 PubMed CrossRef
    11.Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8, e66019. doi:10.​1371/​journal.​pone.​0066019 PubMed PubMedCentral CrossRef
    12.Mukherjee PK, Sendid B, Hoarau G, Colombel JF, Poulain D, Ghannoum MA (2015) Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 12:77–87. doi:10.​1038/​nrgastro.​2014.​188 PubMed CrossRef
    13.Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, Wang J, Li L (2011) Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 70:492–498. doi:10.​1016/​j.​diagmicrobio.​2010.​04.​005 PubMed CrossRef
    14.Nguyen LD, Viscogliosi E, Delhaes L (2015) The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 6:89. doi:10.​3389/​fmicb.​2015.​00089 PubMed PubMedCentral
    15.Dickson RP, Martinez FJ, Huffnagle GB (2014) The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384:691–702. doi:10.​1016/​S0140-6736(14)61136-3 PubMed PubMedCentral CrossRef
    16.Chen YE, Tsao H (2013) The skin microbiome: current perspectives and future challenges. J Am Acad Dermatol 69:143–155. doi:10.​1016/​j.​jaad.​2013.​01.​016 PubMed PubMedCentral CrossRef
    17.Ma B, Forney LJ, Ravel J (2012) Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol 66:371–389. doi:10.​1146/​annurev-micro-092611-150157 PubMed PubMedCentral CrossRef
    18.Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A (2014) Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol 4:101. doi:10.​3389/​fcimb.​2014.​00101 PubMed PubMedCentral CrossRef
    19.Tung JM, Dolovich LR, Lee CH (2009) Prevention of Clostridium difficile infection with Saccharomyces boulardii: a systematic review. Can J Gastroenterol 23:817–821PubMed PubMedCentral
    20.Gerard R, Sendid B, Colombel JF, Poulain D, Jouault T (2015) An immunological link between Candida albicans colonization and Crohn’s disease. Crit Rev Microbiol 41:135–139. doi:10.​3109/​1040841X.​2013.​810587 PubMed CrossRef
    21.Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM (2012) Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336:1314–1317. doi:10.​1126/​science.​1221789 PubMed PubMedCentral CrossRef
    22.Moyes DL, Naglik JR (2012) The mycobiome: influencing IBD severity. Cell Host Microbe 11:551–552. doi:10.​1016/​j.​chom.​2012.​05.​009 PubMed CrossRef
    23.Bonifazi P, Zelante T, D’Angelo C, De Luca A, Moretti S, Bozza S, Perruccio K, Iannitti RG, Giovannini G, Volpi C, Fallarino F, Puccetti P, Romani L (2009) Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol 2:362–374. doi:10.​1038/​mi.​2009.​17 PubMed CrossRef
    24.Delhaes L, Monchy S, Frealle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabe M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7, e36313. doi:10.​1371/​journal.​pone.​0036313 PubMed PubMedCentral CrossRef
    25.Smeekens SP, Malireddi RK, Plantinga TS, Buffen K, Oosting M, Joosten LA, Kullberg BJ, Perfect JR, Scott WK, van de Veerdonk FL, Xavier RJ, van de Vosse E, Kanneganti TD, Johnson MD, Netea MG (2014) Autophagy is redundant for the host defense against systemic Candida albicans infections. Eur J Clin Microbiol Infect Dis 33:711–722. doi:10.​1007/​s10096-013-2002-x PubMed CrossRef
    26.Standaert-Vitse A, Sendid B, Joossens M, Francois N, Vandewalle-El Khoury P, Branche J, Van Kruiningen H, Jouault T, Rutgeerts P, Gower-Rousseau C, Libersa C, Neut C, Broly F, Chamaillard M, Vermeire S, Poulain D, Colombel JF (2009) Candida albicans colonization and ASCA in familial Crohn’s disease. Am J Gastroenterol 104:1745–1753. doi:10.​1038/​ajg.​2009.​225 PubMed CrossRef
    27.Noverr MC, Noggle RM, Toews GB, Huffnagle GB (2004) Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 72:4996–5003. doi:10.​1128/​IAI.​72.​9.​4996-5003.​2004 PubMed PubMedCentral CrossRef
    28.Gaitanis G, Velegraki A, Mayser P, Bassukas ID (2013) Skin diseases associated with Malassezia yeasts: facts and controversies. Clin Dermatol 31:455–463. doi:10.​1016/​j.​clindermatol.​2013.​01.​012 PubMed CrossRef
    29.Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M, Fagarasan S (2014) Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:152–165. doi:10.​1016/​j.​immuni.​2014.​05.​016 PubMed CrossRef
    30.Oever JT, Netea MG (2014) The bacteriome-mycobiome interaction and antifungal host defense. Eur J Immunol 44:3182–3191. doi:10.​1002/​eji.​201344405 PubMed CrossRef
    31.Kalo-Klein A, Witkin SS (1990) Prostaglandin E2 enhances and gamma interferon inhibits germ tube formation in Candida albicans. Infect Immun 58:260–262PubMed PubMedCentral
    32.Zelante T, Iannitti RG, De Luca A, Arroyo J, Blanco N, Servillo G, Sanglard D, Reichard U, Palmer GE, Latge JP, Puccetti P, Romani L (2012) Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun 3:683. doi:10.​1038/​ncomms1685 PubMed CrossRef
    33.Perfect JR (2012) The impact of the host on fungal infections. Am J Med 125:S39–S51PubMed CrossRef
    34.Romani L, Fallarino F, De Luca A, Montagnoli C, D’Angelo C, Zelante T, Vacca C, Bistoni F, Fioretti MC, Grohmann U, Segal BH, Puccetti P (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–215. doi:10.​1038/​nature06471 PubMed CrossRef
    35.Iannitti RG, Carvalho A, Cunha C, De Luca A, Giovannini G, Casagrande A, Zelante T, Vacca C, Fallarino F, Puccetti P, Massi-Benedetti C, Defilippi G, Russo M, Porcaro L, Colombo C, Ratclif L, De Benedictis FM, Romani L (2013) Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. Am J Respir Crit Care Med 187:609–620. doi:10.​1164/​rccm.​201207-1346OC PubMed CrossRef
    36.Legrand F, Lecuit M, Dupont B, Bellaton E, Huerre M, Rohrlich PS, Lortholary O (2008) Adjuvant corticosteroid therapy for chronic disseminated candidiasis. Clin Infect Dis 46:696–702. doi:10.​1086/​527390 PubMed CrossRef
    37.Singh N, Perfect JR (2007) Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect Dis 7:395–401PubMed CrossRef
    38.Casadevall A, Pirofski LA (2003) The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 1:17–24. doi:10.​1038/​nrmicro732 PubMed CrossRef
    39.Wuthrich M, Deepe GS Jr, Klein B (2012) Adaptive immunity to fungi. Annu Rev Immunol 30:115–148. doi:10.​1146/​annurev-immunol-020711-074958 PubMed PubMedCentral CrossRef
    40.Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, Spalding C, Hughes S, Pittaluga S, Raffeld M, Sorbara LR, Elloumi HZ, Kuhns DB, Turner ML, Cowen EW, Fink D, Long-Priel D, Hsu AP, Ding L, Paulson ML, Whitney AR, Sampaio EP, Frucht DM, DeLeo FR, Holland SM (2010) Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 115:1519–1529. doi:10.​1182/​blood-2009-03-208629 PubMed PubMedCentral CrossRef
    41.Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, Frucht DM, Vinh DC, Auth RD, Freeman AF, Olivier KN, Uzel G, Zerbe CS, Spalding C, Pittaluga S, Raffeld M, Kuhns DB, Ding L, Paulson ML, Marciano BE, Gea-Banacloche JC, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM (2011) Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118:2653–2655. doi:10.​1182/​blood-2011-05-356352 PubMed PubMedCentral CrossRef
    42.Lionakis MS (2012) Genetic susceptibility to fungal infections in humans. Curr Fungal Infect Rep 6:11–22. doi:10.​1007/​s12281-011-0076-4 PubMed PubMedCentral CrossRef
    43.van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen C, Arts P, Rosentul DC, Carmichael AJ, Smits-van der Graaf CA, Kullberg BJ, van der Meer JW, Lilic D, Veltman JA, Netea MG (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61. doi:10.​1056/​NEJMoa1100102 PubMed CrossRef
    44.Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova JL (2012) Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol 12:616–622. doi:10.​1097/​ACI.​0b013e328358cc0b​ PubMed PubMedCentral CrossRef
    45.Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776PubMed PubMedCentral CrossRef
    46.Ouederni M, Sanal O, Ikinciogullari A, Tezcan I, Dogu F, Sologuren I, Pedraza-Sanchez S, Keser M, Tanir G, Nieuwhof C, Colino E, Kumararatne D, Levy J, Kutukculer N, Aytekin C, Herrera-Ramos E, Bhatti M, Karaca N, Barbouche R, Broides A, Goudouris E, Franco JL, Parvaneh N, Reisli I, Strickler A, Shcherbina A, Somer A, Segal A, Angel-Moreno A, Lezana-Fernandez JL, Bejaoui M, Bobadilla-Del Valle M, Kachboura S, Sentongo T, Ben-Mustapha I, Bustamante J, Picard C, Puel A, Boisson-Dupuis S, Abel L, Casanova JL, Rodriguez-Gallego C (2014) Clinical features of Candidiasis in patients with inherited interleukin 12 receptor beta1 deficiency. Clin Infect Dis 58:204–213. doi:10.​1093/​cid/​cit722 PubMed PubMedCentral CrossRef
    47.Ryan KR, Hong M, Arkwright PD, Gennery AR, Costigan C, Dominguez M, Denning D, McConnell V, Cant AJ, Abinun M, Spickett GP, Lilic D (2008) Impaired dendritic cell maturation and cytokine production in patients with chronic mucocutanous candidiasis with or without APECED. Clin Exp Immunol 154:406–414PubMed PubMedCentral CrossRef
    48.Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, Alzahrani M, Al-Muhsen S, Halwani R, Ma CS, Wong N, Soudais C, Henderson LA, Marzouqa H, Shamma J, Gonzalez M, Martinez-Barricarte R, Okada C, Avery DT, Latorre D, Deswarte C, Jabot-Hanin F, Torrado E, Fountain J, Belkadi A, Itan Y, Boisson B, Migaud M, Arlehamn CS, Sette A, Breton S, McCluskey J, Rossjohn J, de Villartay JP, Moshous D, Hambleton S, Latour S, Arkwright PD, Picard C, Lantz O, Engelhard D, Kobayashi M, Abel L, Cooper AM, Notarangelo LD, Boisson-Dupuis S, Puel A, Sallusto F, Bustamante J, Tangye SG, Casanova JL (2015) IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349:606–613. doi:10.​1126/​science.​aaa4282 PubMed PubMedCentral CrossRef
    49.Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine 79:170–200PubMed CrossRef
    50.Rosenzweig SD, Holland SM (2005) Defects in the interferon-gamma and interleukin-12 pathways. Immunol Rev 203:38–47. doi:10.​1111/​j.​0105-2896.​2005.​00227.​x PubMed CrossRef
    51.Rezai MS, Khotael G, Kheirkhah M, Hedayat T, Geramishoar M, Mahjoub F (2008) Cryptococcosis and deficiency of interleukin12r. Pediatr Infect Dis J 27:673. doi:10.​1097/​INF.​0b013e318179263a​ PubMed CrossRef
    52.Cheng SC, van de Veerdonk F, Smeekens S, Joosten LA, van der Meer JW, Kullberg BJ, Netea MG (2010) Candida albicans dampens host defense by downregulating IL-17 production. J Immunol 185:2450–2457PubMed CrossRef
    53.Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L (2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37:2695–2706. doi:10.​1002/​eji.​200737409 PubMed CrossRef
    54.Loures FV, Pina A, Felonato M, Calich VL (2009) TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J Immunol 183:1279–1290PubMed CrossRef
    55.Romani L, Zelante T, De Luca A, Fallarino F, Puccetti P (2008) IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. J Immunol 180:5157–5162PubMed CrossRef
    56.Ahlgren KM, Moretti S, Ardesjö Lundgren B, Karlsson I, Åhlin E, Norling A, Hallgren Å, Perheentupa J, Gustafsson J, Rorsman F, Crewther PE, Rönnelid J, Bensing S, Scott HS, Kämpe O, Romani L, Lobell A (2011) Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model. Eur J Immunol 41:235–245PubMed CrossRef
    57.Kreindler JL, Steele C, Nguyen N, Chan YR, Pilewski JM, Alcorn JF, Vyas YM, Aujla SJ, Finelli P, Blanchard M, Zeigler SF, Logar A, Hartigan E, Kurs-Lasky M, Rockette H, Ray A, Kolls JK (2010) Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin Invest 120:3242–3254. doi:10.​1172/​JCI42388 PubMed PubMedCentral CrossRef
    58.Wiesner DL, Specht CA, Lee CK, Smith KD, Mukaremera L, Lee ST, Lee CG, Elias JA, Nielsen JN, Boulware DR, Bohjanen PR, Jenkins MK, Levitz SM, Nielsen K (2015) Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog 11, e1004701. doi:10.​1371/​journal.​ppat.​1004701 PubMed PubMedCentral CrossRef
    59.Bozzi A, Reis BS, Pereira PP, Pedroso EP, Goes AM (2009) Interferon-gamma and interleukin-4 single nucleotide gene polymorphisms in paracoccidioidomycosis. Cytokine 48:212–217. doi:10.​1016/​j.​cyto.​2009.​07.​011 PubMed CrossRef
    60.Bhatia S, Fei M, Yarlagadda M, Qi Z, Akira S, Saijo S, Iwakura Y, van Rooijen N, Gibson GA, St Croix CM, Ray A, Ray P (2011) Rapid host defense against Aspergillus fumigatus involves alveolar macrophages with a predominance of alternatively activated phenotype. PLoS One 6, e15943. doi:10.​1371/​journal.​pone.​0015943 PubMed PubMedCentral CrossRef
    61.Guimaraes AJ, Frases S, Gomez FJ, Zancope-Oliveira RM, Nosanchuk JD (2009) Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum. Infect Immun 77:1357–1367PubMed PubMedCentral CrossRef
    62.McClelland EE, Nicola AM, Prados-Rosales R, Casadevall A (2010) Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J Clin Invest 120:1355–1361PubMed PubMedCentral CrossRef
    63.Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252:104–115. doi:10.​1111/​imr.​12028 PubMed PubMedCentral CrossRef
    64.Schlapbach C, Gehad A, Yang C, Watanabe R, Guenova E, Teague JE, Campbell L, Yawalkar N, Kupper TS, Clark RA (2014) Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med 6:219ra218. doi:10.​1126/​scitranslmed.​3007828 CrossRef
    65.Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13:21–38. doi:10.​1038/​nrd4176 PubMed CrossRef
    66.De Luca A, Zelante T, D’Angelo C, Zagarella S, Fallarino F, Spreca A, Iannitti RG, Bonifazi P, Renauld JC, Bistoni F, Puccetti P, Romani L (2010) IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 3:361–373PubMed CrossRef
    67.Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385. doi:10.​1016/​j.​immuni.​2013.​08.​003 PubMed CrossRef
    68.Liu Y, Yang B, Zhou M, Li L, Zhou H, Zhang J, Chen H, Wu C (2009) Memory IL-22-producing CD4+ T cells specific for Candida albicans are present in humans. Eur J Immunol 39:1472–1479. doi:10.​1002/​eji.​200838811 PubMed CrossRef
    69.De Luca A, Carvalho A, Cunha C, Iannitti RG, Pitzurra L, Giovannini G, Mencacci A, Bartolommei L, Moretti S, Massi-Benedetti C, Fuchs D, De Bernardis F, Puccetti P, Romani L (2013) IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog 9, e1003486. doi:10.​1371/​journal.​ppat.​1003486 PubMed PubMedCentral CrossRef
    70.Gresnigt MS, Becker KL, Smeekens SP, Jacobs CW, Joosten LA, van der Meer JW, Netea MG, van de Veerdonk FL (2013) Aspergillus fumigatus-induced IL-22 is not restricted to a specific Th cell subset and is dependent on complement receptor 3. J Immunol 190:5629–5639. doi:10.​4049/​jimmunol.​1202601 PubMed CrossRef
    71.Gessner MA, Werner JL, Lilly LM, Nelson MP, Metz AE, Dunaway CW, Chan YR, Ouyang W, Brown GD, Weaver CT, Steele C (2012) Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun 80(1):410–417. doi:10.​1128/​IAI.​05939-11 PubMed PubMedCentral CrossRef
    72.Lilly LM, Gessner MA, Dunaway CW, Metz AE, Schwiebert L, Weaver CT, Brown GD, Steele C (2012) The beta-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol 189:3653–3660. doi:10.​4049/​jimmunol.​1201797 PubMed PubMedCentral CrossRef
    73.Bacher P, Kniemeyer O, Schonbrunn A, Sawitzki B, Assenmacher M, Rietschel E, Steinbach A, Cornely OA, Brakhage AA, Thiel A, Scheffold A (2014) Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunol 7:916–928. doi:10.​1038/​mi.​2013.​107 PubMed
    74.Bedke T, Iannitti RG, De Luca A, Giovannini G, Fallarino F, Berges C, Latge JP, Einsele H, Romani L, Topp MS (2014) Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3 regulatory T cells in humans and mice. Immunol Cell Biol 92:659–670. doi:10.​1038/​icb.​2014.​34 PubMed PubMedCentral CrossRef
    75.Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernandez-Santos N, Edgerton M, Gaffen SL, Lenardo MJ (2011) CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34:422–434. doi:10.​1016/​j.​immuni.​2011.​03.​002 PubMed PubMedCentral CrossRef
    76.Romani L, Puccetti P (2006) Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends Microbiol 14:183–189PubMed CrossRef
    77.Seo KW, Kim DH, Sohn SK, Lee NY, Chang HH, Kim SW, Jeon SB, Baek JH, Kim JG, Suh JS, Lee KB (2005) Protective role of interleukin-10 promoter gene polymorphism in the pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation. Bone Marrow Transplant 36:1089–1095. doi:10.​1038/​sj.​bmt.​1705181 PubMed CrossRef
    78.Bozzi A, Pereira PP, Reis BS, Goulart MI, Pereira MC, Pedroso EP, Leite MF, Goes AM (2006) Interleukin-10 and tumor necrosis factor-alpha single nucleotide gene polymorphism frequency in paracoccidioidomycosis. Hum Immunol 67:931–939. doi:10.​1016/​j.​humimm.​2006.​07.​014 PubMed CrossRef
    79.Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW (2007) CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119:482–487. doi:10.​1016/​j.​jaci.​2006.​10.​007 PubMed CrossRef
    80.Ohshima M, Futamura M, Kamachi Y, Ito K, Sakamoto T (2009) Allergic bronchopulmonary aspergillosis in a 2-year-old asthmatic boy with immune dysregulation, polyendocrinopathy, enteropathy, X-linked. Pediatr Pulmonol 44:297–299. doi:10.​1002/​ppul.​20992 PubMed CrossRef
    81.Verbsky JW, Chatila TA (2011) T-regulatory cells in primary immune deficiencies. Curr Opin Allergy Clin Immunol 11:539–544. doi:10.​1097/​ACI.​0b013e32834cb8fa​ PubMed PubMedCentral CrossRef
    82.Kluger N, Ranki A, Krohn K (2012) APECED: is this a model for failure of T cell and B cell tolerance? Front Immunol 3:232. doi:10.​3389/​fimmu.​2012.​00232 PubMed PubMedCentral CrossRef
    83.De Luca A, Montagnoli C, Zelante T, Bonifazi P, Bozza S, Moretti S, D’Angelo C, Vacca C, Boon L, Bistoni F, Puccetti P, Fallarino F, Romani L (2007) Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol 179:5999–6008PubMed CrossRef
    84.Carvalho A, De Luca A, Bozza S, Cunha C, D’Angelo C, Moretti S, Perruccio K, Iannitti RG, Fallarino F, Pierini A, Latge JP, Velardi A, Aversa F, Romani L (2012) TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119:967–977. doi:10.​1182/​blood-2011-06-362582 PubMed CrossRef
    85.Nahum A, Dadi H, Bates A, Roifman CM (2011) The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol 127:528–531. doi:10.​1016/​j.​jaci.​2010.​09.​031 PubMed CrossRef
    86.de Luca A, Bozza S, Zelante T, Zagarella S, D’Angelo C, Perruccio K, Vacca C, Carvalho A, Cunha C, Aversa F, Romani L (2010) Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cell Mol Immunol 7:459–470. doi:10.​1038/​cmi.​2010.​43 PubMed PubMedCentral CrossRef
    87.Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774. doi:10.​1038/​nri1457 PubMed CrossRef
    88.Puccetti P, Grohmann U (2007) IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol 7:817–823. doi:10.​1038/​nri2163 PubMed CrossRef
    89.Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34:137–143. doi:10.​1016/​j.​it.​2012.​10.​001 PubMed PubMedCentral CrossRef
    90.Zelante T, Fallarino F, Bistoni F, Puccetti P, Romani L (2009) Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes Infect 11:133–141. doi:10.​1016/​j.​micinf.​2008.​10.​007 PubMed CrossRef
    91.Jaronen M, Quintana FJ (2014) Immunological relevance of the coevolution of IDO1 and AHR. Front Immunol 5:521. doi:10.​3389/​fimmu.​2014.​00521 PubMed PubMedCentral CrossRef
    92.Grohmann U, Puccetti P (2015) The coevolution of IDO1 and AhR in the emergence of regulatory T-cells in mammals. Front Immunol 6:58. doi:10.​3389/​fimmu.​2015.​00058 PubMed PubMedCentral CrossRef
    93.Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–190. doi:10.​1038/​nature13323 PubMed PubMedCentral CrossRef
    94.Austin CJ, Rendina LM (2015) Targeting key dioxygenases in tryptophan-kynurenine metabolism for immunomodulation and cancer chemotherapy. Drug Discov Today 20:609–617. doi:10.​1016/​j.​drudis.​2014.​11.​007 PubMed CrossRef
    95.Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH (2009) Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol 41:467–471. doi:10.​1016/​j.​biocel.​2008.​01.​005 PubMed CrossRef
    96.Williams Z (2012) Inducing tolerance to pregnancy. N Engl J Med 367:1159–1161. doi:10.​1056/​NEJMcibr1207279 PubMed PubMedCentral CrossRef
    97.Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761PubMed CrossRef
    98.Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A, Wallis D, Galaviz S, Huttenhower C, Sacchettini JC, Behar SM, Rubin EJ (2013) Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155:1296–1308. doi:10.​1016/​j.​cell.​2013.​10.​045 PubMed PubMedCentral CrossRef
    99.Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C, Orabona C, Belladonna ML, Ayroldi E, Nocentini G, Boon L, Bistoni F, Fioretti MC, Romani L, Riccardi C, Puccetti P (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586. doi:10.​1038/​nm1563 PubMed CrossRef
    100.Yuasa HJ, Ball HJ (2013) Indoleamine 2,3-dioxygenases with very low catalytic activity are well conserved across kingdoms: IDOs of Basidiomycota. Fungal Genet Biol 56:98–106. doi:10.​1016/​j.​fgb.​2013.​03.​003 PubMed CrossRef
    101.Harrington L, Srikanth CV, Antony R, Rhee SJ, Mellor AL, Shi HN, Cherayil BJ (2008) Deficiency of indoleamine 2,3-dioxygenase enhances commensal-induced antibody responses and protects against Citrobacter rodentium-induced colitis. Infect Immun 76:3045–3053PubMed PubMedCentral CrossRef
    102.Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 141:131–160PubMed CrossRef
    103.Heath-Pagliuso S, Rogers WJ, Tullis K, Seidel SD, Cenijn PH, Brouwer A, Denison MS (1998) Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37:11508–11515PubMed CrossRef
    104.Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A 88:9543–9547PubMed PubMedCentral CrossRef
    105.Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J (2013) Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol 35:677–691. doi:10.​1007/​s00281-013-0394-4 PubMed CrossRef
    106.Di Meglio P, Duarte JH, Ahlfors H, Owens ND, Li Y, Villanova F, Tosi I, Hirota K, Nestle FO, Mrowietz U, Gilchrist MJ, Stockinger B (2014) Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40:989–1001. doi:10.​1016/​j.​immuni.​2014.​04.​019 PubMed PubMedCentral CrossRef
    107.Vlachos C, Schulte BM, Magiatis P, Adema GJ, Gaitanis G (2012) Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells. Br J Dermatol 167:496–505. doi:10.​1111/​j.​1365-2133.​2012.​11014.​x PubMed CrossRef
    108.Gaitanis G, Magiatis P, Stathopoulou K, Bassukas ID, Alexopoulos EC, Velegraki A, Skaltsounis AL (2008) AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J Invest Dermatol 128:1620–1625. doi:10.​1038/​sj.​jid.​5701252 PubMed CrossRef
    109.Platten M, von Knebel DN, Oezen I, Wick W, Ochs K (2014) Cancer Immunotherapy by Targeting IDO1/TDO and Their Downstream Effectors. Front Immunol 5:673. doi:10.​3389/​fimmu.​2014.​00673 PubMed PubMedCentral
    110.Litzenburger UM, Opitz CA, Sahm F, Rauschenbach KJ, Trump S, Winter M, Ott M, Ochs K, Lutz C, Liu X, Anastasov N, Lehmann I, Hofer T, von Deimling A, Wick W, Platten M (2014) Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget 5:1038–1051PubMed PubMedCentral CrossRef
  • 作者单位:Teresa Zelante (1)
    Giuseppe Pieraccini (2)
    Lucia Scaringi (1)
    Franco Aversa (3)
    Luigina Romani (1)

    1. Pathology, Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06132, Perugia, Italy
    2. Mass Spectrometry Centre (CISM) of the University of Florence, Florence, Italy
    3. Department of Hematology, University of Parma, Parma, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Immunology
    Internal Medicine
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1863-2300
文摘
Fungal commensals coexist in a complex milieu of bacteria within the human body. An increased understanding of the importance of microbiota in shaping the host’s immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. Metagenomics has revealed the complex interactions between fungal and bacterial commensals that, either directly or through the participation of the host immune system, impact on immune homeostasis at mucosal surfaces that, in turn, lead to secondary fungal infections. Metabolomics has captured the dialogue between the mammalian host and its microbiota. It appears that the host tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) plays a dominant role in the interplay between tryptophan catabolism by microbial communities, the host’s own pathway of metabolite production, and the activation of the aryl hydrocarbon receptor (AhR)/IL-22 axis, eventually impacting on mucosal immune homeostasis and host/fungal symbiosis. Thus, the regulatory loop involving AhR and IDO1 may be exploited for the development of multi-pronged host- and microbiota-directed therapeutic approaches for mucosal and systemic fungal diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700